Wavelet Decomposition Method for L,/TV-lmage Deblurring
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Abstract. In this paper, we show additional properties of the limit of a sequence produced by the subspace
correction algorithm proposed by Fornasier and Schonlieb [25] for La/TV-minimization problems.
An important but missing property of such a limiting sequence in [25] is the convergence to a
minimizer of the original minimization problem, which was obtained in [24] with an additional
condition of overlapping subdomains. We can now determine when the limit is indeed a minimizer
of the original problem. Inspired by the work of Vonesch and Unser [36], we adapt and specify this
algorithm to the case of an orthogonal wavelet space decomposition for deblurring problems and
provide an equivalence condition to the convergence of such a limiting sequence to a minimizer. We
also provide a counterexample of a limiting sequence by the algorithm that does not converge to a
minimizer, which shows the necessity of our analysis of the minimizing algorithm.
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1. Introduction. In image processing, one is interested in the restoration of an observed
image, which is corrupted by a measurement device. Let Q = [0,1]? and T : Ly(Q) — Lo(Q)
be a blur operator modelled as a convolution Tu = u * k, with kernel x € L;(£2). Then the
ideal observed noiseless image ¢ can be described as

g =Tu,

where u € Ly(2) is the unknown image, which we would like to reconstruct. In general, the
observed data is additionally corrupted by noise e, i.e.,

g=Tu+e. (1.1)

We are in particular interested in the recovery of u from the given noisy observed image g
when the operator T is not invertible or ill-conditioned, and regularization techniques are
required [19].

Images can be well approximated using the superposition of few wavelets [15, 30]. Hence
we make the realistic assumption that u can be represented by a sparse wavelet expansion,
i.e., for a given wavelet basis {¢) : A € A} indexed by a countable set A the image u can be
well approximated by a series expansion with few nonvanishing coefficients of the form

u~ Sup = ZUAT/)A,

AEA
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where up = (ux)rep € l2(A) and S : lo(A) — Lo(f2) is a bounded linear operator, called
the synthesis operator. It is acknowledged that the simultaneous minimization of the least-
squares discrepancy to data and of the ¢;-norm of coefficients promotes sparsity [16]. Hence
we consider the minimization of the functional

J(un) = [[Aus = gl17, () + 2allualle, ) = [ Aua — gl1F ) + 20D [ual (1.2)
AEA
with respect to the vector of wavelet coefficients upn = (uy)xepa, where o > 0 is a fixed

regularization parameter, and A =T o S : l5(A) — Ly(Q) is the composition of the synthesis
map S and the operator T. In order to address this minimization with respect to up, one
can use, for instance, the so-called iterative soft-thresholding algorithm [16]: pick an initial

ug\o) € l3(A) and iterate
w5, 4+ A% (g — 4d)), >0, (1.3)

where S, : £2(A) — f2(A) is defined componentwise by S, (v) = (Savx)ycp, and

Su(v) = {v —sign(v)a  |v] >«

0 otherwise

is the so-called soft-thresholding operator. The strong convergence of the algorithm in (1.3) to
minimizers of J is proved in [16]. In [5] it was shown that under additional conditions on the
operator A or on minimizers of (1.2) the algorithm in (1.3) converges linearly, although with
a rather poor rate in general, see [23] for a broader discussion. There exist several alternative
approaches, that promise to solve /1-minimization with fast convergence [17, 21, 28, 3]. One
way to accelerate the speed of convergence of minimizing iterative soft-thresholding algorithms
for large-scale problems was proposed in [22]. There a domain decomposition method for ¢1-
norm minimization was introduced and analyzed.

The main idea of this algorithm is to decompose the index set A into two (or more) disjoint
sets A;, i = 1,2,..., such that A = A; U Ay. Associated with this decomposition we define
Vi = {up € lo(A) : supp(up) C A;} for i = 1,2. Then we minimize J by using the following
alternating algorithm: pick an initial V; @& Vo > ug\ol) + ug\oz) = ug\o)’ for example u(® = 0, and
iterate

ug\nfi) ~ argming, ey, J(ua, TUX;))
uf\";r ) ~ argminy, cv, J(ugnl+ ),uA2) (1.4)
us\nJrl) — usxnlﬂ) 4 UX;H)’

where uy, is supported on A; only, i = 1,2. We observe that the ¢;-norm splits additively

llua, +unslle; () = lluay e (ao) + luaslle (az)

and hence the subproblems in (1.4) are of the same kind as the original problem (1.2), i.e.,
for example for the problem on A; we have
(n) (n))

. o . o - 2
arg min, J(UA1+UA2)—arguir1u€I}/l [Ansun; = (9 — Ansup )7, ) + 20wy lle ()
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where Ap, is the restriction of the matrix A to the columns indexed by A;. Therefore, for
solving the subminimization problems of (1.4) we can use one of the before mentioned methods,
for example again the iterative thresholding algorithm:

uly Y = S (Y 4 AR (9 - Anull)) - Anal"Y), de L2\ () (1)

Great advantages of this domain decomposition algorithm are that we can solve instead
of one large problem several smaller problems, which might lead to an acceleration of conver-
gence with a reduction of overall computational cost, and that it can be easily parallelized.
Convergence of both the sequential and the parallel versions of this algorithm is proven in
[22]. The same method was used in [36] by Vonesch and Unser with minor modifications,
specifically by using Haar wavelets for deblurring (or deconvolution) problems, where cyclic
updates of the different resolution levels were combined with the preconditioning effect of
subband-specific parameters. The effectiveness of this method was shown by solving multidi-
mensional image deconvolution problems, as 3D fluorescence microscopy. We give a brief and
intuitive explanation of the reason why this multilevel method works so well for deblurring
problems: wavelet space decompositions split the function space into orthogonal subspaces
V;. Note that T is just a convolution operator with kernel x or a multiplier # in the Fourier
domain, where the V;’s represent nearly disjoint dyadic subbands, and we have that all Ay,
are also nearly orthogonal, ie., A} Ax, ~ 0 for i # 7. Hence each subiteration (1.5) of the
algorithm in (1.4) is (nearly) restricted to one of the V;, independent of other subiterations,
and converges fast as A} Ay, is a well-conditioned operator. This is the case whenever the
Fourier transform # is, for example, a slowly decaying function on the subband associated
with V;, see Figure 1.1.

Vo V1 Vs

Figure 1.1. We depict a slowly decaying envelope of the Fourier transform i of a kernel k. The
spaces V1 and Vo are two orthogonal spaces, obtained by a wavelet decomposition and associated to
nearly disjoint subbands. Restricted on the subband associated to V;, the function k, essentially repre-
senting the spectrum of the matrixz Ax,, can be intuitively understood as bounded from above and below,
providing the well-conditioning of the operator A} An,.

To gain maximal performance of the algorithm in (1.4) we need to introduce preconditioner
constants for each subiteration respectively, i.e., instead of considering I — A*AiAAi we take
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iteration operators

1
I — —A} Ap,,
o A A
for a; > || An, |12

The main goal of this paper is to transpose these observations on preconditioning effects
of alternating algorithms based on wavelet decompositions to the deblurring model where the
term [Jupllg, (a) in (1.2) is substituted by the total variation of the function u. We recall that

for u € L1(2)

V(u,Q):= sup{/ udivp dr : ¢ € [C’(}(Q)]2 elloo < 1}
Q

is the variation of w. Moreover, u € BV (), the space of bounded variation functions [1, 20]
if and only if V(u,§2) < oco. In this case, we denote |Du|(2) = V(u, Q) the total variation
of the finite Radon measure Du, the derivative of u in the distributional sense. The space
BV () endowed with the norm |ul|gy () = |ullz, @) + [Dul(Q2) is a Banach space. The
minimization of the total variation is a well-understood regularization for preserving edges of
images. Rudin, Osher, and Fatemi [33] proposed the minimization of functionals with total
variation constraints as a regularization technique for image denoising. From this pioneering
work, total variation minimization became a standard tool in image processing, also for more
sophisticated problems, such as deblurring, superresolution, inpainting etc. [2, 9, 10, 18, 35].
We also refer to [11] for an extensive introduction to the use of total variation in imaging.

Our reason for expecting that the preconditioning effects observed by Vonesch and Unser
[36] for Haar wavelet-based regularization will take place also in total variation regularization
of deblurring problems stems from the well-known near characterization of BV in terms of
wavelets [13, 14]: the BV-norm of a bivariate function w is in fact nearly equivalent to the
¢1-norm of its bivariate Haar wavelet coefficients up. More precisely, there exist constants
c1,co € RT such that

crllualle,,s < llulln, @) + [Dul() < c2llualle, for all u e BV(Q), (1.6)

and for all 6 > 0. Actually these inequalities result in embeddings of BV with respect to
suitable Besov spaces:

B, C BV Cc ByY.

We refer the interested reader to [14] for more details.

Because of this observation and the above mentioned preconditioning mechanism for a
deblurring operator in connection with a wavelet space decomposition, we are interested in
the minimization of the functional

T (u) = | Tu — gll, () + 20 Dul (), (1.7)

by using a suitably adapted wavelet-based multilevel algorithm.
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1.1. Our approach. Domain decomposition and subspace correction methods for func-
tionals of the form (1.7) were already proposed in [24, 25]. There some of the authors of
this paper mainly focused on the splitting of the physical domain {2 into smaller subdomains
Q =Y, Q and studied an alternating minimization algorithm on each subspace. Neverthe-
less, the validity of the algorithm proposed in [25] is not restricted in principle to orthogonal
decompositions of the space resulting from splittings of the physical domain €2, but can also
be applied to more abstract orthogonal decompositions of the function space, e.g., a wavelet
space decomposition as we have it in mind here. Let ¢ be a scaling function generating a
multiresolution analysis (V;);cz and 1 a corresponding wavelet function. Then we obtain

L) = vi=vie@w, = Pw,
j=t

€L JEZL
where W; is the wavelet space corresponding to the j-th level generated by the basis

{n s A e Ay},

and A; denotes the set of indices for the j-th level, see [12, 15] for more details. Moreover,
W is the orthogonal complement of V; in Vj4, i.e., we have

Vipr=V; & Wj. (1.8)

In particular we may decompose L2(€2) in the following way

L) =V o Vi = Voo (W)
j=0

o0
and denote V; := Vy and Vy := VOl = @ W;. Associated with this wavelet decomposition
j=0
into two subspaces the minimization of (1.7) can be carried out by the alternating subspace

(0)

correction method proposed in [25], which reads as follows: pick an initial Vi & Vo 3 vy +
ugo) = u(® for example u(®) = 0, and iterate

ugnJrl) /A argming, ey, J(u1 + u;n))

u;nJrl) A arg ming,cy, j(ugnﬂ) + us) (1.9)

u(n+1) :u§n+1)+u;n+1)‘

In [25] an implementation of this algorithm was suggested, which guaranteed to decrease
the objective energy J monotonically. However, convergence to minimizers of J could be
proven only under technical conditions, which are in general not fulfilled, as also illustrated
by numerical examples in [25].

In this paper we show additional properties of the limit of a sequence produced by the
algorithm in (1.9) and obtain an additional condition under which the obtained limit is indeed
the expected minimizer. Nevertheless, this condition cannot be ensured to hold always for
any operator T'. In particular, we are able to construct a counterexample, which shows that in
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general we cannot expect convergence of the algorithm in (1.9) to a minimizer of 7, even for
the simplest case of the identity operator 7" = I. Despite this quite special negative result, we
show in this paper that an orthogonal wavelet space decomposition for deblurring problems
works in practice very efficiently, as already observed by Vonesch and Unser in their study
related to ¢1-regularization [36]. In particular, with the help of the newly obtained condition
of convergence, we are able to show in our numerical examples that the sequence produced
by this algorithm in fact numerically converges to a minimizer of 7.

We would like to emphasize that the minimization algorithm analyzed in this paper is
(3.8), which was proposed in [25] and is a modification from [22], is different from the block
coordinate descent method analyzed in [34]. In fact, one can notice a slightly different form of
a block coordinate descent method for ¢1-minimization in [22]. The main difference is that the
algorithm in [34] is to compute a minimizer for each coordinate block with the other blocks
fixed, whereas the algorithm in [22] is to perform any finite number of iterations in the inner
loops for each coordinate block. In addition, the convergence in [22] holds in a Hilbert space
setting, whereas the convergence in [34] holds only in finite dimensional spaces.

Throughout the paper we eventually work on a finite dimensional space by considering
a finite regular mesh as a discretization of 2. Hence we consider instead of the continuous
functional (1.7) its discrete approximation, for ease again denoted by J in (3.1). Note that the
discrete approximation (3.1) T'-converges to the continuous functional (1.7) (see [4, 29]) and
has the same singular nature as the continuous problem. For simplicity we will limit ourselves
to decompose our problem only into two orthogonal subspaces V; and Vs, which is by no
means a restriction, as a generalization to a multiple decomposition is straightforward, see [25,
Remark 5.3]. However, we stress also that in our numerical experiments the beneficial effect
of preconditioning seems not to improve significantly by considering multiple decompositions,
see Section 6.

The paper is organized as follows. The main notations used throughout the paper are
given in Section 2. In Section 3 we describe the algorithm in (1.9), specified to a wavelet
space decomposition. The convergence of the algorithm to a minimizer of 7 is investigated in
Section 4, where we show properties of the limit of the sequence produced by the algorithm.
Additionally we construct a counterexample to show that convergence cannot be obtained in
general. Section 5 contains the proof of the main results. In Section 6, we show numerical
examples for total variation deblurring which illustrate our findings.

2. Notations. Since we are mainly interested in image deblurring problems, it is sufficient
to us to introduce our main notations for a discretization in [0, 1] only. We assume now that
Q) is a 2-dimensional mesh in [0,1]? of size N1 x Na, where N, No € N. The considered
function space is H = RV *N2 | with corresponding norm

1/2
e = Tl = <Z|u<:g>|2> |

€

Then the discrete gradient Vu is the vector of the finite differences on the mesh, given by

(Vu)(z) = (Vu)' (2), (Vu)* (2))
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where

(Vu) (25) = {u(x”ld) —u(zi;) ifi <N

0 if 1 = Ny,

and
(VU)Q(w ) _ u(xz‘,j+1) — u(a:i,j) ifj < No
! 0 if j = No,

fori=1,...,Ny and j = 1,..., Ny. Then the discrete total variation of u is defined by

Vul(Q) == |Vu(z)|.

€N

where [y| = \/y7 +y3 for every y = (y1,92) € R,

For an operator Q we denote by Q* its adjoint. Further we introduce the discrete diver-
gence div : H? — H defined, in analogy with the continuous setting, by div = —V* (V* is the
adjoint of the discrete gradient V). The discrete divergence operator is explicitly given by

pl(azi,j) —pl(:nllfl’j) ifl<i< N pQ(xi,j) —p2($i7j,1) if1<j< Ny
(divp)(wiz) = { p'(2iy) if iy =1 + 9 P (i) if j =1
—p!(zi-14) if iy = Ny —p(zi 1) if j = No,

for every p = (p',p?) € H2. Further we define the closed convex set

K:={divp:pe H2, |p(x)| <1 forall z € Q},

where [p(z)| = v/(p*(2))? + (p%(x))2, and denote Pk (u) = arg min,eck [|u—v||2 the orthogonal
projection onto K. We will also denote by (-, -)g2 the scalar product in R2.

3. Description of the Algorithm.

3.1. Preconditioning. We are interested in solving by the multilevel algorithm in (1.9)
the minimization of the discrete functional J : H — R defined by

J (u) = | Tu — gll + 20| Vu|(), (3.1)

where T : 'H — H is a blur operator with kernel s, ¢ € H is a given datum, and o > 0
is a fixed regularization parameter. Furthermore, it is convenient that we assume ||T|| < 1,
which is not a restriction, as a proper rescaling of the problem yields the desired setting, and
does not change the minimization problem. In order to guarantee the existence of minimizers
for (3.1) we assume that J is coercive in H, i.e., there exists a constant C' > 0 such that
{ueH:J(u) <C} is nonempty and bounded in H. It is well known that if 1 ¢ ker(T") then
this coercivity condition is satisfied, see [35, Proposition 3.1]. In addition, if T" is injective, for
instance, if k is a Gaussian or an averaging convolution kernel (see Section 6), then (3.1) has
unique minimizer.

We can identify H with the sequences of samples (u(zr))zeq of a function u on [0,1]2,
and with Vi, the first scaling space of a multiresolution analysis, by means of the map
(u(z))zea — D_xen, w(TA)P11, Where ¢ ) is a properly dilated scaling function, and (xx)xea
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is a suitable rearrangement of the nodes of the mesh Q. Moreover, by property (1.8), we
have the orthogonal splitting H = V; = Vy @ Wy. Of course, we may obtain further levels of
decomposition

0
H:Vj@ @WZ JEZL.

i=j
For simplicity we restrict ourselves to a decomposition into two subspaces Vi := V{ and
Vs := Wy only. We define
my, t H — Vi,

the orthogonal projection onto V;, for i = 1,2. Then every u € H has a unique representation
u = my, (u) + 7y, (u). In the sequel we denote u; = my,(u), for i = 1,2. Moreover we introduce
surrogate functionals on V1 @& Vs for a € V; and for i = 1,2 by

Jilur, uzsa) = I (ur + uz) + aillu; — all3 — | T(u; — a)|3, (3.2)

where a1, as are positive constants chosen as specified below in order to ensure convergence
of the subminimization iteration

1,0+1
(LD

i

= arg mi{)l %(ul,u2;u§n+l’£)), >0, (3.3)

Uq 7
to a minimizer of the corresponding subproblem of (1.9), i.e.,

arg min J(u1 + ug),
u; €V;

for i = 1,2. Let us further define the synthesis operators S7 : £ — V; via the orthonormal
basis for Vi and S : fo — Vs via the orthonormal basis for Va. That is u; = Si(up,) and
ug = So(up,) for up, = (up)ren, the scaling function coefficients and wup, = (ux)rep, the
wavelet coefficients. Since S7, Sy are isometries, we know that

HTVi(ui - a)H% - ”TViSi(uAi - aAz)H% and ”ul - QH% - Hqu - aAiH%Q’

where a = S1(aa,) or a = Sa(ap,) and Ty, denotes the operator 7' restricted to the subspace
V;, for 1 = 1,2. Because of these observations it makes sense to choose

1> a; > ||Ty,Si|? (3.4)
for ¢ = 1,2. Then we obtain
Ty, (o — )3 = Ty, SiCun, — an) P < [T Silllun, — an, I3, < avllus — all3.
Notice that with constants «; as in (3.4), we have for n = 1,2, ...,

< A", uf M) < gl D).
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3.2. An alternating minimization. A simple calculation shows that 7; can be written in
the following form:

Ti(ui, uzs a) = || T (u; + uz) = gl13 + 20|V (us + u:)[(Q) + aillus — all3 — [|T(u; — a)|3
= allu; — 2|3 + 20|V (u; + u3)[(Q) + ¢(a, g, u3),

where )
zi = my,a + oY (T*(g — T(w; + a)))
7

and ¢ is a function depending only on a, g, u;, and i€ {1,2}\ {i}. Hence,

arg min Ji(uy,up;a) = arg min |lu; — 21|35 4+ 261 |V (u1 + u2)|(Q) (3.6)
u1 €V u1 €V

arg min Jo(u1,ug;a) = arg min ||ug — Z2H% + 262|V(u1 + u2)|(2) (3.7)
us€Vo us Vo

where 3; = a/a, for i = 1,2.
In order to address the subminimization problems (3.6) and (3.7) we have to solve a
constrained optimization problem of the type

arg min 7 (u),
where II is a linear bounded operator, specifically an orthogonal projection. More precisely,
we have to solve, respectively,

arg min Jj(uy,ug;a) and arg min Jj(ui,ug;a).
7rv2u1=0 mluz:o

There exist a variety of methods that solve this type of constrained minimization problems,
as the Augmented Lagrangian Method [27], and its adaptations known under the name of
the Bregman iterations [7, 8, 26, 31, 32, 37, 38, 39]. Here, for simplicity, we use the Iterative
Oblique Thresholding algorithm as proposed in the work [25]. Before stating the theorem
which recalls the main idea of this algorithm, we introduce the notion of a subdifferential.

Definition 3.1. For a convex function F' : H — R, we define the subdifferential of F' at
u € H, as the set valued function

OF (u) :={u* e H: (u",v—u)+ F(u) < F(v) YveH}.

It is obvious from this definition that 0 € OF (u) if and only if u is a minimizer of F. We
focus, for instance, on the minimization on V;, and similar statements hold symmetrically for
the minimization on V.
Theorem 3.2.(Oblique Thresholding, [25]) For uy € Vo and for z1 € V1 the following state-
ments are equivalent:
(1) uj = arg min [lu; — 213 + 2611V (w1 + u2)|(9Q),
(ii) there exists m1 € Range(my,)* ~ Vo such that 0 € ui — (z — 1) + B10|V (u] + u2)|(2).
(iit) there exists m € Vo such that uf = (I — P, g)(2 +u2 —m) —ug € Vi,
(i) there exists m € Vo such that m = 7y, Pg ik (m — (2 + u2)).
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The existence of 71 € Vs, as in the previous theorem is shown in [25, Proposition 4.6].
Moreover, the iteration (3.3) for i = 1 can be explicitly rewritten as

1
uﬁ”l) = (I — P, k) (ugg) + a—lﬂ'vlT*(g —Tuy — Tugz)) + ug — 77@) — U,

where ng) € V5 is any solution of the fixed point iteration

1
m = mv, P i (771 — (u” + a—lﬂvlT*(g — Tuy — Tul") + U2)> -

The computation of 7#) can be in fact implemented as the limit of the following fixed point

algorithm

1
7750’6) e Vs, ngmﬂ’z) =y, Ps, i (ngm,z) — (ugg) + a—lwvlT*(g —Tuy — Tugz)) + U2)> , m>0.

For the subspace Vs, one can formulate analogous statements just by adjusting the notations
accordingly.
Let us return to our sequential algorithm in (1.9) and express it explicitly as follows: pick

an initial V; & Vo > ugo’L) + ugO’M) = u(® and iterate for n =0,1,2,...,

( ugnﬂ,o) _ ugn,L)
ugnH’Hl) = arg miny, ey, J1(u1, ugn’M);ugnH’é)) (=0,...,L—1
ugnJrl,O) _ ugn,M) (3.8)
u;nJrl’erl) = argming,cy, j2(u§n+1,L), Ug; u;nJrl’m)) m=0,....,M—1

| w1 .— ugnJrl,L) —l—ugﬁLl’M).

Note that we prescribe a finite number L, M € N of inner iterations for each subspace respec-
tively. Then from (3.8) we obtain sequences (ugn’L))n, (uén’M))n and (zgn’L))n, (zén’M))n such
that

n n 1 * " .
A" =™ (T g - T ) (3.9)
n n 1 * n 5 n,
A0 = g o, (1 (g = T ). (3.10)
Note that
u" ) = arg min Jlu — 2" 3 4260V (u + ) ()
u 1
and

uy" M = arg min [lu— 253 4 26V (0" )l (@).
u 2
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4. Main Result. We do not pursue the analysis of the convergence of the algorithm in
(3.8), as its proof is exactly the same as in [25, Theorem 5.1]. At this point, we have to
emphasize that the convergence of the algorithm in [25] is not the convergence to a minimizer
of the original problem of minimizing the functional J in (3.1), which is a very important,
but unfortunately missing property of the algorithm. Therefore, we would like to investigate
further equivalent conditions for the limits of the sequences produced by this algorithm to be
minimizers of J that will lead us to a better understanding of the algorithm and hopefully
enable us to answer the question of convergence to a minimizer.

Theorem 4.1. We collect properties of minimizers of J and limits of the algorithm in (3.8)
in the following statements.

a) Let ¢,u € H. Then ¢ € 0J (u) if and only if there exists (&,&) € H x H? such that

L €l < o,
2. (&(x), Vu(z))gre + a|Vu(z)| =0 for all x € Q,
3. T*¢ — div(28) + ¢ =0,
4. =& =2(Tu—g).
In particular w is a minimizers if and only if the conditions 1.-4. hold for ( = 0.
b) Let (u™), be a sequence produced by (3.8). Then for a strongly convergent subsequence
of (u™ = ugn’L) + uén’M))n with, limit u(>) = ugoo) + uéoo), we have

W' = arg min lu— 23 + 26,V (u + u5) (), (4.1)
uy™ = arg min u — 257 |f + 265/ V()™ + )| (@), (42)
zgoo) = ugoo) + ailﬂ-Vl (T"(g - TU(OO)))a (4.3)
zéoo) = uéoo) + O%sz (T"(9 — TU(OO)))a (4.4)

where B; = a/oy, for i =1,2. Moreover, let us denote z(*) = u(®) + T*(g — Tu(>).
Then, u(®) is a minimizer of (3.1) if and only if

ul) = argmin{F(u) := u — 2|3 + 20| Vu|(©Q)}. (4.5)

The most important in Theorem 4.1 is the equivalent condition (4.5), so before proving the
previous statements we add some comments on the possibility of verification of the minimality
condition (4.5). Let F(uj,u2) = F(uy + ug) for uy € V; and ug € Vy. Then (4.1) and (4.2)
imply

F(ugoo),ugoo)) < arg min {F(vl,uéoo)),F(ugoo),vg)}. (4.6)
v1€¥)1
voEV2

Unfortunately, (4.6) may not imply that u(>) = ugoo) + ugoo) is a minimizer of (4.5) and

eventually of (3.1). We propose the following univariate counterexample, which also shows
that the algorithm in (3.8) may fail to converge to a minimizing solution. For simplicity, we
return to the continuous setting and we assume that 2 is the interval [—1, 2], and g = X[0,1/2)-
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We consider univariate Haar wavelets, i.e., let po = X[o,1) and ¥ = Xx[0,1/2) — X[1/2,1)- Then
we have
1 1
g=35%0+ 5%-

We can prove the following proposition.

Proposition 4.2. Let 0 < a < 1/8 and Vy be the subspace of La(|—1,2]) generated by
{po(x — k) : k € {=1,0,1}} and Vo be the subspace of La([—1,2]) generated by {v;i(x) =
201/24p0(29x — k) : j € Zy U{0}, k€ {=27,...,27}}, then

1 -4« 1 —-4a
uf>) = 50, uy™ = 5 Yo,
which satisfy
arg min F(up,uz) < F(ugoo),ugoo)) < arg min {F(vl,ugoo)),F(ugoo),m)} (4.7)
uq €V vy EV
u2€Vy vaEVh

where
F(ul,u2) = f(ul + UQ) = Hu1 + Ug — QH% + 204’V(U1 + UQ)’([—1,2])
1 2 1 12
PR RN enpe e

Proof. We prove the result by showing that the algorithm in (3.8), starting with u® =0,

stops by converging to u(®) = ugoo) + uéoo) in finite iterations, and that (4.7) holds. Let

ugo) = ugo) = 0. Then

u(l) =ar i
1 = argmin

1 2
min |[u - §¢0H2 + 20| Vu([~1,2). (4.8)

Then ugl) = ayq for some a > 0 and

1= 50|, +219ul(1-1.20) = ago = 0], + 200l Vipol((-1.2)

1\2 Aoy — 1\ 2
:<a—§) +4aa:(a+ e ) + 200 — 40,
Since a < 1/8, (4.8) attains its minimum when
1—4a . 1) 1 4o

a=——— ie, u’ = .

2 ) ) 1 2 ®o

Now, we solve
(1) _ . L1 (1)
uy’ =argmin ||[u — =¢o|| + 20|V (u;’ +u)|([—1,2]). (4.9)

u€Vo 2 2

It is not hard to see that ugl) = by for some b > 0. If we assume b < 17240‘, then

+b+2b+

e~ ge] s + 2019 +wi(-12) = (b 3) 20 (152 Lot y)

4o — 1

2 2 2
:<b+ ) 4 da— 1202 > da — 1202,
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which is minimized when b = 17240‘. On the other hand, if we assume b > 17;”, then since
0< fa o o <y
1 2 1\2 1—-14 1—-14
Hu—§¢0H2+2a|V(u§” Fu)|([~1,2]) = <b—§> +2a< @ ppop- 2 +b)

8a—1

2 2 2
:<b+ ) 4 da — 1602 > da — 1202,

which is also minimized when b = %. Hence

1 1— 4«
W) =12

Yo.

Now, we solve

(2) . Lo (1)
uy” = arg min lu — 5(,00H2 + 20|V (u+uy )|([—1,2]).

It is easy to see that u§2) = aipg for some a > 0. If we assume a < 1_24", then since 1_24" < %,
1 2 1\2 1-14 1-14
Hu—§¢ﬂ2+2Mvm+wghm—Lm):(a—i)-+m(a+ S (1-da)+ = —a)

- (a— 5) +da(l - 4a) > da — 1202,
which is minimized when a = 17240‘. On the other hand, if we assume a > 1*240‘, then

Hu B %%Hz + 20|V (u+uy))|([-1,2)) = (a - %)2 + 2a<a .1 _24a +(1—da)fa— > _24a>

da — 172
:(a+ a2 ) Fda — 1202 > da — 1202,

which is also minimized when a = %. We finally obtain

2 1 -4« 1
ug): 5 (p():ug).

Therefore, after only one step of the algorithm in (3.8), we have

o) 1—4 o) 1—4
ups) = 1240 () _ 1~ 4a

It is now easy to see that ugoo),ug)o) satisfy (4.6) and
F(ugoo),ugoo)) = 4a — 8.
However, if u = axjo,1/2) = §%0 + %o, then

Fu) = llu— gl3 + 2a|Vul([-1,2]) = (a = 1)*|x[0,1/2|I3 + 20 - 2a

1 1
= Z(a —1)? + 4daa = Z(a—i— (8a — 1))* + 4 — 1602
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Since 0 < a < 1/8, if we set up = (1 — 8a)x[0,1/2) = 17280‘@0 + %M), then

min _ F(uy,uz) < F(ug) = 4a — 160° < 4a — 8a* = f(ugoo) + ugoo)) = F(ugoo),ugoo)).
u1EV1,us€Vs

|
Theorem 4.1-a) also provides us with the following useful characterization.
Corollary 4.3. The subdifferential of ad|Vu|(?) is fully characterized by

ad|Vu|(2) ={div(§) €e H : ||{]|cc < @, (&(z), Vu(x))rz + a|Vu|(z) =0 for all x € Q}
= {div(¢) e H : —div(§) = Par(—u —div(€))}.

_ Proof. 1f we consider T' = I in Theorem 4.1-a), then ¢ € ad|Vu|(Q) if and only if ¢ =
2(¢C +u—g) € 0F (u) if and only if there exists (&,&) € H x H? such that

L [[¢]loc < @,
2. (&(x), Vu(z))re + a|Vu(z)| =0 for all z € Q,

3. ¢ =div(¢).

Hence,
ad|Vu|(Q) = {div(€) € H : ||¢]loe < @, (£(z), Vu(z))g2 + o|Vu|(z) = 0 for all z € Q}.
We also notice that
div(§) € o| Vu|(Q) if and only if 0 € v — (u + div(§)) + @d|Vu|(£2),
which is equivalent to
u = argmin [lv — (u+ div(¢))|[3 + 2| Vv|(Q),

that is,
—u = arg min v+ (u+ div(€))]3 + 2a|Vo|(Q).

By [25, Examples 4.2.2], the latter optimality problem is equivalent to
—u = (I = Par)(~u — div(¢)),

that is,
—div(§) = Par (—u — div(§)).

Therefore, we also have

ad|Vu|(Q) = {div(€) € H : —div(€) = Pag(—u — div(€))}.
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5. Proof of Theorem 4.1.

a) The proof of this statement, which characterizes the minimizers of 7, can be found in
[24, Appendix A].

b) For simplicity, we rename a convergent subsequence again by (u(”) = ( )+ (n, M))
Equations (4.3) and (4.4) follow directly from (3.9) for n — oo. Furthermore 1t is also
easy to see that for any u; € Vy,

n-

[l = 23 426, Vu)|(Q) = lim [Ju{"TP — 02 40 W (@Y M) (@)

< tim [luy — 2" 4 261V (n + uf)|(Q)
— Jur — 22 + 26, |V (uy + u$™)|(©).

The second limit is a consequence of [25, formula (5.7)], which states the asymptotic
regularity of the sequence, i.e.,

L-1 M—1
(=0

m=0
(5.1)
Hence, we have

0™ = arg min [lu— 2| + 2619 (u + u5™) ().

With the same argument one obtains (4.2). By Theorem 3.2 the optimality conditions
(4.1) and (4.2) are equivalent to

0€uf™ — (2 ’—m )+ﬁ1(‘9lvu (),
0 € ul® — (247 — ) 4 8,0 vul)|(Q).

Then by Corollary 4.3 there exist &1, & such that

div(&r) = —ul™ + (21 = ™), 5.2
div(&) = —us™ + (257 — n>), (5.3)

and with the following additional properties
L. ”gluoo < Bly HSQHOO < ﬂQ and
2. (&(x), Vul™) (z))ge + 8| Vul™) (z)| = 0 for all z € Q and i = 1,2.
Multiplying (5.2) by a; and (5.3) by aq yields
—alugoo) + alzgoo) — omﬁoo) —apdiv(§) =

0
—agugoo) + agzéoo) — 04277500) —agdiv(&s) = 0.

I

If we sum up the last two equations we obtain

—a1u§°°) + alz§°°) — a2u§°°) + agzéoo) —div(a1&1) — div(agés) — (a1n§°o) + agnéoo))

0

—
ot
=~

S~—
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From Theorem 3.2 we have that

i = v Pouac(™ = (17 4 uf™)) and 0 = m Py (™ = (o5 4 ui™)

and it follows then from (5.2), (5.3), and Corollary 4.3 that

omﬁoo) = my,(—div(ai1&1)) = 7Tv2PaK(—u(°°) —div(an&1)), (5.5)
04277500) = 7TV1(— diV(aggg)) = WvlpaK(—u(oo) — diV(aggg)). (56)

Plugging (5.5) and (5.6) in (5.4) and using the definition of zgoo) and zéoo) yield

0=—T*(Tu"> - g) — div(a1 &) — div(as&s) + (my, div(ar &) + my, div(aés))
= —T*(Tu(oo) —g) — (my, div(a1&1) + Ty, div(aeés))

Therefore, if there exists & such that div(£) € ad|Vul>®)|(Q) and
div(§) = my, div(ea&r) + my, div(aeéa), (5.7)

then ¢ also satisfies

L €lleo < 0

2. (&(x), Vul®) (2))ge + a|Vul>®)|(z) = 0 for all z € €,

3. T*& — div(2¢) = 0,

4. =& = 2(Tu'>® — g).
The existence of such € is a necessary and sufficient condition for u(>) to be a minimizer
by a). Then ¢ satisfies

(%) 4 2() = (g — Twu(®) = —a1u§°°) + a1z§°°) - a2u§°°) + agzéoo) = div(¢),

that is,
200 = ) _div(e) and  div(€) € a|Va™)|(Q),

where 2() := 4(®) £ T*(g — Tu(>)). Note that for i = 1,2,

2% = (1 — ai)ugoo) + aizioo)
By div(¢) € ad|Vul>®)|(Q) and Corollary 4.3, this is equivalent to

ul®) — 2(°) = _div(&) = Pag (—ul®) = div(€)) = Pag (—2%)
Hence,

—ul®) = (I — Pyg)(—2)) = arg min 4 22 + 20| Vu|(Q).

which proves the theorem.
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The proof of Theorem 4.1 finally provides us with another characterization of u(>) being
a minimizer of (3.1) by &1,&2 in (5.2), (5.3).

Corollary 5.1. Let a; < 1, ag < 1. The limit u(®), obtained in Theorem 4.1 b), is a
minimizer of (3.1) if and only if there exist &1, in (5.2), (5.3) with div(a1&1) = div(aeés).

Proof. First let us prove the statement for a; = ap = 1: If u(*) is a minimizer of (3.1),
then Theorem 4.1 and [25, Examples 4.2.2] say that

u™®) = (I — Py )(2%)).

Since oy = ag = 1, we obtain

z%oo) = ﬂylz(oo), zéoo) = 7ry2z(°°).

We then can rephrase this in two different ways as follows.
™ = (I = Par) (5™ + g™ — (g™ = 27)) — u™,
or uf® = (I = Pur) (25 + uf™ = (W™ = 7)) - uf>.
By Theorem 3.2, we can take

77§oo) _ ugoo) o Zéoo), ngoo) _ ugoo) o zgoo)

This implies div(£;) = div(&2) from (5.2) and (5.3). On the other hand, if div(&;) = div(&2),
then (5.7) implies that u(°) is a minimizer of (3.1).

Now let us prove the statement for aq, g < 1: Suppose that «(>) is a minimizer of (3.1).
Then Theorem 4.1 b) says that

u®) = (I = Py) (%)) if and only if div(€) = —u®) + 2() € ad|Vu*)|(Q) for some &.
By the above considerations, we know that there exist nfo’l, Ny ! such that
(o0) (c0) (c0) (o0) (o0) (00)

oo, 00) __ oo, 00) __
m = Uq — 7TV2Z( ) = Uy —Q2Zy T, Ty = Uy — 7T])1Z( ) = 1Uyg — 12

and
—ugoo) + (Wvlz(oo) — nfo’l) =div(§) = —ugoo) + (771;27:(00) — ngo’l).

oo, 1
Let 7,7 = "g—i, & = O% for i = 1,2. Then

div(e") = —uy™ + (51 =),

div(gs?) = —uy™ + (27 — 75>,

Moreover one can see that div(£>) € 3;0|Vul™)|(Q) for i = 1,2. Hence if we let & = &
and & = &2, then div(ag &) = div(€) = div(agés).

On the other hand, if there exist £1,&; satisfying div(a1&;) = div(aeés) in (5.2), (5.3),
then by (5.7), we know that the limit u(°®) is a minimizer of (3.1). [ ]
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6. Numerical Validation. In this section we illustrate the performance of the algorithm in
(3.8) for the minimization of (3.1) when T is a blur operator with kernel . In our experiments
we used only periodic boundary conditions for the blurring kernel. The function space is split
into N € N orthogonal spaces by a wavelet space decomposition such that

0
H=Vane| P W
j=2—N

and we set Vi := Vo_y and V; := Wo_; for i = 2,3,..., N. Note that for N = 1 we have
that V1 = H and thus we have no splitting. In order to gain maximal performance, the
preconditioner constants are always chosen as

a; > [Ty, Si| 1%, (6.1)

for i = 1,..., N, as already discussed in detail for N = 2 in Section 3.1. For optimal per-
formance of the algorithm the «;’s should be chosen close to this lower bound. In the case
N = 1, where no decomposition is done, we just set the preconditioner constant o; = 1,
which is a good choice in order to verify how big the preconditioning impact for N > 1 for
deblurring problems is. However, in order to ensure convergence the assumption |7 < 1
has to be fulfilled, which might not be true for a general blurring operator 1. Therefore, we
simply rescale the minimization problem by multiplying the functional (3.1) by the positive
constant HTlllm’ for € > 0 fixed. Let us emphasize that such a rescaling does not change
the minimizer of the functional, but only provides a different interpretation of the problem.
However, we are aware of the fact that rescaling in a “good” way is already preconditioning
the problem, see Table 6.2. Note that a rescaling is redundant when preconditioner constants
are chosen as in (6.1), since this choice already ensures convergence of the algorithm, see Sec-
tion 3. Moreover any rescaling of the whole problem automatically effects the preconditioner
constant in an equivalent way, i.e., if we rescale the functional J in (3.1) by v > 0, then the
rescaled preconditioner constants «; , are chosen according to (6.1) as

Qiy =Y > 7|’TViSi|’2 - HﬁTViSiH27

which is then equivalent to just multiplying (3.2) by ~.

In our numerical examples we only consider decompositions by using Haar wavelets. In
this case it is easy to see that the preconditioner constant for the scale space Vo_y is simply
aj > ||T|| and the preconditioner constants for the wavelet spaces Wj, j =0,...,2 — N, are
strictly smaller than the norm of T'.

The implementation of the algorithm is done as suggested and discussed in [25]. That
is the subiterations in (3.8) are solved by computing the minimizers by means of oblique
thresholding, cf. Theorem 3.2. For the computation of the orthogonal projection onto 5; K,
i=1,...,N, in the oblique thresholding we use an algorithm proposed by Chambolle in [9].

6.1. Experiments. As a measure for the restoration quality of an image we would like to
use a “distance” between the obtained estimate and the original image. Therefore we recall
the definition of Signal-to-Error-Ratio Gain [36] given by

lg — orgl|

SERG =20 loglo M,
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where org, g, u* denote the original image before blurring and the image after blurring and
the restored image, respectively. In our examples we stop the algorithm in (3.8) as soon as
the quality measure SERG reaches a significant level S*, i.e.,

SERG > S*. (6.2)

The level S* is always chosen visually, i.e., we once restore the image of interest till we
observed a visually reasonable restoration and we set S* as the reached SERG-value. For our
analysis purposes, where the original image before blurring is known, this stopping criterion
is reasonable. However, in real cases the original image is unknown and then one cannot use
this stopping criterion. In this case one may stop the algorithm when it reaches a significant
energy J or when the difference of the energy between two consecutive iterations falls below
a certain small value. Another alternative would be to stop the algorithm when the norm of
the difference of two successive iterates undercuts a certain value, which indicates that we are
close to a solution.

We start our numerical discussion in Figure 6.1, where we show an image of size 156 x 156
pixels, which is corrupted by an averaging blur operator T" with kernel x supported on 9 x 9
pixels and having uniform values 1/81. In order to deblur this image we split the function
space of the image into orthogonal subspaces via a wavelet space decomposition and compute
its solution by the algorithm with « = % -10~* and stopping criterion (6.2) with S* = 3.3.
Here, the regularisation parameter « is chosen according to the strength of the blurring, i.e.,
the value of « increases with increasing size of the blurring kernel. At the same time, the
SERG value S* that we hope to reach decreases with increasing the blur on the image. The
computed result for 5 subspaces is shown in Figure 6.1 on the right hand side.

Blurred image Restored image

Figure 6.1. On the left we depict an image, blurred with an averaging kernel of size 9 X 9 pizels
with uniform values 1/81. On the right we show the corresponding solution computed on 5 orthogonal
subspaces by the algorithm in (3.8) with a = % -10=%* and stopping criterion (6.2) with S* = 3.3.

With the same setting as above, we solve this specific deblurring problem with the algo-
rithm in (3.8) for different numbers of subspaces and compare its performance with respect
to the needed iterations and computational time in Table 6.1. Note that for N = 1 we solve
this problem without any decomposition on the whole space H. We see in Table 6.1 that the
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performance in this case is the worst. When we solve the same problem with a decomposition
into two or more wavelet spaces fewer iterations are needed to reach the stopping criterion
due to the preconditioning. This also leads to a speed-up in computational time that is most
significant for a splitting into 5 subspaces.

N 1 2 3 4 ) 6
Iterations | 832 323 148 84 53 54
CPU (s) | 88.98 | 76.80 | 55.49 | 40.64 | 32.26 | 41.04

Table 6.1

Performance of the wavelet decomposition algorithm in (3.8) for the image deblurring problem of
Figure 6.1 (Average kernel 9 x 9 with uniform value %, image size 156 x 156 pizels) with o = % -1074
and SERG-stopping criterion (6.2) with S* = 3.3: the number of iterations and CPU time in seconds
are shown with respect to the number N of subspace decompositions.

Note that since the norm of 7" might exceed 1, we rescale the problem for N = 1 with
m, € > 0 such that we can guarantee convergence. For simplicity we used ¢ = 1 to
obtain a reasonable rescaling. We also tested the algorithm with different (smaller) e-values,
see Table 6.2. Note that rescaling the problem with a very small ¢ > 0 already introduces
a preconditioning effect in the problem as we clearly see in Table 6.2. Nevertheless, with
our orthogonal wavelet decomposition strategy into 5 subspaces, the algorithm in (3.8) still

performs clearly better.

N| ¢ Iterations | CPU(s)

1 1 832 88.98

1 0.5 624 61.73

1 0.1 457 49.13

1]107° 415 43.25

5 - 53 32.26
Table 6.2

Performance of the wavelet decomposition algorithm in (3.8) for the image deblurring problem of
Figure 6.1 (Average kernel 9 x 9 with uniform value 8—11, image size 156 x 156 pizels) with SERG-
stopping criterion (6.2) with S* = 3.3. Since it might be that |T|| > 1, we have to rescale the problem

for N =1 with w in order to guarantee convergence: the number of iterations and CPU time in

seconds are shown with respect to the number N of subspace decompositions with different €.

We further tested our wavelet algorithm for varying sizes of averaging kernels and for
Gaussian blur. In particular, we consider small averaging kernels of size 3 x 3 pixels with
values 1/9, see Figure 6.2, and large averaging kernels of size 11 x 11 pixels with values 1/121,
see Figure 6.3. As before, these specific deblurring problems were solved with the algorithm
in (3.8) for different numbers of subspaces and we compare their performances with respect to
the needed iterations and computational time in Table 6.3 and Table 6.4. Note that for N = 1,
where no decomposition is done, we rescale the problem here and in the sequel always as above
by m with € = 1. In the case of a small blurring kernel of size 3 x 3 the advantage of the
wavelet decomposition algorithm (3.8) over the deblurring algorithm without decomposition
(N = 1) almost disappears (a slightly faster CPU time can be achieved with N = 2 and
N = 4). In contrast, when we have severe blurring, see Figure 6.3, where a blurring kernel
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of size 11 x 11 was used, a wavelet decomposition in several subspaces clearly improves the
computational performance of the deblurring algorithm, see Table 6.4. Hence, the wavelet
decomposition strategy pays off in terms of computational time for large blurring kernels,
which is usually the interesting case in practice.

Blurred image Restored image
- .

Figure 6.2. On the left we show an image of 156 x 156 pizels, blurred by an averaging kernel
supported on 3 x 3 pizels with uniform values 1/9. On the right we show the corresponding solution
computed alternating on 5 orthogonal subspaces by the algorithm in (3.8) with o = %10_5 and stopping
criterion (6.2) with S* =9.

N 1 2 3 4 5) 6
Iterations | 481 245 189 131 129 129

CPU (s) | 46.18 | 42.45 | 47.14 | 44.79 | 59.29 | 78.31
Table 6.3

Performance of the wavelet decomposition algorithm in (3.8) for the image deblurring problem of

Figure 6.2 (Average kernel 3 x 3 with uniform value %, image size 156 x 156 pizels) with o = g -107°

and SERG-stopping criterion (6.2) with S* = 9: the number of iterations and CPU time in seconds

are shown with respect to the number N of subspace decompositions.

N 1 2 3 4 5 6
Iterations | 817 390 224 133 67 69

CPU (s) | 96.67 | 102.70 | 94.19 | 77.94 | 52.00 | 64.08
Table 6.4
Performance of the wavelet decomposition algorithm in (3.8) for the image deblurring problem of
Figure 6.3 (Average kernel 11 x 11 with uniform value 3, image size 156 x 156 pizels) with o = 3-10~*
and SERG-stopping criterion (6.2) with S* = 2.5: the number of iterations and CPU time in seconds
are shown with respect to the number N of subspace decompositions.

In Figure 6.4 we show an image that is blurred by a blurring operator with Gaussian kernel
of size 9 x 9 pixels and variance 20. In order to deblur the image we split the function space
of the image into 5 orthogonal wavelet spaces and compute its solution by the algorithm in
(3.8) with a = % -10~* and stopping criterion (6.2) with S* = 3.3, see Figure 6.4 right hand
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Blurred image Restored image

Figure 6.3. On the left we show an image of 156 x 156 pizels, blurred by an averaging kernel supported
on 11 x 11 pizels with uniform values 1/121. On the right we show the corresponding solution computed
alternating on 5 orthogonal subspaces by the algorithm in (3.8) with a = g-l(]_4 and stopping criterion

(6.2) with S* = 2.5.

side. With the same setting, we solve this specific problem for different numbers of subspaces
and compare its performance with respect to the needed iterations and computational time
in Table 6.5. Also in this example we see a significant improvement when using the wavelet

decomposition algorithm.

Blurred image Restored image

! m

Figure 6.4. On the left we show an image of 156 x 156 pizels, blurred by a Gaussian kernel supported
on 9 x 9 pizels with variance 20. On the right we show the corresponding solution computed alternating
on 5 orthogonal subspaces by the algorithm in (3.8) with a = 2-10~* and stopping criterion (6.2) with

S* =3.3.

By using Lemma 5.1 we check for a splitting into 2 orthogonal subspaces whether the
sequential algorithm numerically converges to a minimizer by looking at

| div(are™) — div(azed™)|l, (6.3)
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N 1 2 3 4 5 6
Iterations 895 352 160 90 57 58

CPU (s) | 102.43 | 83.65 | 55.65 | 43.87 | 35.48 | 43.74
Table 6.5
Performance of the wavelet decomposition algorithm in (3.8) for the image deblurring problem of
Figure 6.4 (Gaussian kernel 9 X 9, image size 156 x 156 pizels) with o = % -10™* and SERG-stopping
criterion (6.2) with S* = 3.3: the number of iterations and CPU time in seconds are shown with respect
to the number N of subspace decompositions.

where

div(ﬁ%n)) —ugn) + (z%n) — n%n))
div(ed™) = —ul” + (" — ™).

In Figure 6.5 we plot the decay of this norm discrepancy, indicator of the distance from
convergence to a minimizer, with respect to the iterations n. The indicator seems numerically
to converge to zero for n increasing and the algorithm numerically converges to a minimizer
of the original problem.
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Figure 6.5. We plot || div(alégn)) - div(agéén))ﬂ for the problem of Figure 6.1 (left) and Figure 6.6
(right) in view of Lemma 5.1 in order to check whether the algorithm is indeed converging.

In Figure 6.6 we depict another example of an image deblurring problem, where the image
of size 279 x 285 pixels was blurred by a Gaussian kernel with size 11 x 11 pixels and variance
20. The image is again recovered via the algorithm in (3.8) by splitting the function space H
into orthogonal wavelet spaces. We take as a stopping criterion (6.2) with S* = 5.5 and as a
regularization parameter oo = % -10~*. Note that in this example the image size is bigger than
in our first example and the distribution of structural scales in the image in Figure 6.6 is very
different to the one in the Barbara image. In particular, the image in Figure 6.6 is made up of
finer scale features, like the fur of the cat, while in the Barbara image from before the finest
scales are the ones inside the scarf. We will see that both of these discrepancies will cause
our algorithm to behave slightly different to its behaviour in the first deblurring example. In
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Table 6.6 we show the behaviour of the algorithm for different numbers of subspaces. While
the preconditioning effect of the decomposition approach in (3.8) still results in decreasing the
number of iterations, it does not improve the performance with respect to the computational
time. We think that the reason for this is a combination of the two new aspects mentioned
before. Because the image is quite different from the image used in our previous example, the
preconditioning effect seems to be weaker, not decreasing the number of iterations as much as
in the previous example. Therefore, the additional computational effort, paid for solving the
deblurring problem, e.g., twice (for N = 2), instead of once (N = 1), is not compensated by
the decrease in the number of iterations. In contrast, when we only consider a small piece of
the image (e.g., 64 x 64 pixel) than the decomposition algorithm in (3.8) performs again better
than without decomposition, see Table 6.6. This leads to a suggestion that if a bigger image
has to be deblurred one may combine algorithm (3.8) with a parallel domain decomposition
strategy, e.g., solving the deblurring problem on subdomains of the image parallel to each
other, cf. [25].

Blurred image Restored image

Figure 6.6. On the left we show an image, blurred by a Gaussian kernel. On the right we show the

corresponding solution computed alternating on 2 orthogonal subspaces by the algorithm in (3.8) with

o= % 10~ and stopping criterion (6.2) with S* = 5.5.

In Figure 6.8 we show the evolution of the quality measure SERG with respect to time
for the deblurring problem in Figure 6.1 for N = 1 (no splitting), for N = 5 (splitting into
5 wavelet subspaces) in comparison with the domain decomposition algorithm in [25] with 2
subdomains. The wavelet decomposition algorithm in (3.8) achieves the target SERG-value
much faster than the other two minimization strategies, which is due to the preconditioning
that leads to a tremendous iteration reduction. Note that domain decomposition strategies
only really pay off when we deal with large image sizes, as it is not the case in the present
example (image size 156 x 156 pixels). However the domain decomposition algorithm of [25]
still outperforms the algorithm without decomposition. While the wavelet decomposition
algorithm proves to be the most effective one, reaching higher SERG values very fast, all
three algorithms decrease the energy J nearly with the same speed as we depict in Figure
6.7.
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Cat image N 1 2 3 4 5 6
Image size 279 x 285 | Iterations 612 517 413 201 99 103
and S* =5.5 CPU (s) | 206.92 | 535.33 | 723.65 | 469.81 | 292.83 | 355.38
Image size 156 x 156 | Iterations | 492 318 241 138 68 69
and S* = 5.5 CPU (s) 59.5 87.85 | 110.56 | 91.17 | 58.43 | 70.17
Image size 64 x 64 | Iterations 189 111 72 31 19 20
and S* =5.5 CPU (s) 9.12 10.66 | 11.53 8.65 7.30 9.05
Image size 64 x 64 | Iterations 314 176 120 51 28 29
and S* = 6.5 CPU (s) | 1562 | 17.18 | 18.28 | 11.68 9.54 12.34
Table 6.6

Performance of the wavelet decomposition algorithm for image deblurring (Gaussian kernel 11x11)
with o = % -10™* and with SERG-stopping criterion (6.2): the number of iterations and CPU time in
seconds are shown with respect to the number N of subspace decompositions.

Energy versus time Energy versus time
T T T T

T T T T
- = = N=1 - = =N=1

L R N=5 1 [ T APy N=5 |
DD for 2 subdomains

DD for 2 subdomains

log(Energy)
log(Energy)

Time Time

Figure 6.7. We show for N = 1, N =5, and for the domain decomposition algorithm [25] for a
decomposition into 2 subdomains the decay of the logarithm of the energy for the deblurring problem of
Figure 6.1. In (b) we zoomed in to the first 10 seconds.

6.2. Comparison with other wavelet-based algorithms. In this section we compare the
performance of the algorithm in (3.8) with the algorithm of Vonesch and Unser [36] and with
the wavelet frame algorithm developed by Cai et al.[6]. For our comparison, we use Haar
wavelets and we choose a deblurring and denoising problem for a simple test image to point
out a clear advantage of our method. Here, in Figure 6.9 (a) we show an image of size 128 x 128,
which is black on the left half and white on the right half. We corrupt this image by a blur
operator with averaging kernel supported on 3 x 3 pixels and uniform values 1/9, and we add
additive white Gaussian noise with variance 20, see Figure (6.9) (b). We check the performance
of all three algorithms concerning the recovery of the edge in the picture, which reveals one
of the main advantages of our proposed algorithm. In order to guarantee a fair comparison,
this deblurring and denoising problem is solved by each of the three algorithms with different
parameters producing the best possible results in terms of SERG. For the algorithm in (3.8)
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SERG versus time

SERG

Figure 6.8. We show for N =1, N =5 of the algorithm in (3.8), and for the domain decomposition
algorithm [25] for a decomposition into 2 subdomains the evolution of the quality measure SERG for
the deblurring problem of Figure 6.1.

we decomposed the problem into two orthogonal wavelet spaces, used the stopping criterion
[u — V| < 107°

and tested for @ = 1071,1072,1072,107%, and 107°. It turned out that the best result
was obtained for a = 1072, see Figure 6.10 (a), where SERG = 27.74. The algorithm by
Vonesch and Unser was tested for regularization parameters a of the value 1,10, 100,1000
and terminated after 20,50, 100,500, and 1000 iterations. The best result, which has SERG
= 10.51, was obtained for e = 100 by 50 iterations, see Figure 6.10 (c). The frame based
algorithm by Cai et al. was tested for A = 0.05,0.15,0.2,0.3,0.5 and p = 0.002,0.02,0.2,
cf. [6] for more details. Here the best result was obtained for p = 0.2, \ = 0,15 by 1000
iterations, see Figure 6.10 (e), and has SERG = 18.65. In order to show more clearly the
differences in the reconstruction of these three algorithms, we plotted cross sections of the
recovered images in the middle column of Figure 6.10 and closer look at parts of the edges
in the right column, where we changed the colors (dark blue represents black and dark red
represents white) to visualize the edge reconstruction better. We observe that our proposed
algorithm in (3.8) restores the edge almost perfectly between black and white regions while
keeping them very uniform, see Figure 6.10 (b) and (c). In contrast, the algorithm of Vonesch
& Unser has problems in restoring the edge as well as restoring the uniform parts, see Figure
6.10 (e) and (f). The algorithm by Cai et al. also does some slight smoothing around the edge
as well as it does some smoothing on the boundaries, see Figure 6.10 (h) and (i). To sum up
the algorithm in (3.8) gives the best restoration of this deblurring & denoising problem, i.e.,
the sharpest reconstruction of the edge. However, we observed that the other two algorithms
performed their reconstruction much faster although not so accurate.
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