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Surrogate Functional Based Subspace
Correction Methods for |mage Processing

Michael Hinterniiller' and Andreas Langér

1 Introduction

Recently in [3, 4, 5] subspace correction methods for nonegmand non-additive
problems have been introduced in the context of image psawgswvhere the non-
smooth and non-additive total variation (TV) plays a funéaial role as a regular-
ization technique, since it preserves edges and discatigigin images. We recall,
that foru € LY(Q), V(u, Q) := sup{ [, udivpdx: ¢ € [C}(Q)], ||¢]» < 1} is the
variation ofu. In the event tha¥/ (u, Q) < « we denotdDu|(Q) =V (u, Q) and call
it the total variation ot in Q [1].

In this paper, as in [5], we consider functionals, which ¢sinsf a non-smooth
and non-additive regularization term and a weighted coation of an/!-term and
a quadrati#?-term; see (1) below. This type of functional has been shoretpar-
ticularly efficient to eliminate simultaneously Gaussiard &alt-and-pepper noise.
In [5] an estimate of the distance of the limit point obtairfienn the proposed sub-
space correction method to the global minimizer is estabtisIn that paper the ex-
act subspace minimization problems are minimized, whielirageneral not easily
solved. Therefore, in the present paper we analyse a subspaection approach
in which the subproblems are approximated by so-calegtbgatefunctionals, as in
[3, 4]. In this situation, as in [5], we are able to achieve stineate for the distance
of the computed solution to the real global minimizer. Witle thelp of this esti-
mate we show in our numerical experiments that the propogeditam generates
a sequence which converges to the expected minimizer.

2 Notations

For the sake of brevity we consider a two dimensional setiinly. We defineQ =
{x<...<xw}x{y1<...<yn} CR? andH = RN*N whereN € N. Forue H
we write u = u(x) = u(x,y;), wherei,j € {1,...,N} andx € Q. Leth = X1 —
Xi = Yj+1—Yj be the equidistant step-size. We define the scalar produgvef H
by (u,V)n = h?S,co U(X)v(x) and the scalar product gf,q € H? by (p,q)y2 =
h? 3 e (P(X), (X)) g2 With (z,W)g2 = 5_; zjw; for everyz= (z;,2) € R? andw =
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(Wi, w2) € R2 We also uséiu m(a) = (2 Sxeo [UX)[?) P, 1< p< o, ull (o) =
SURo JU(x)| and]| - ||, when any norm can be taken.

The discrete gradierilu is denoted by(Ou)(x) = ((Ou)(x), (Ou)?(x)) with
(Out(x) = #(u(Xiz1,yj) — u(x,yj)) if i <N and (Ou)}(x) = 0 if i = N, and
(Ou)?(x) = #(u(xi,yj+1) — u(xi,yj)) if j <N and(Ou)?(x) =0 if j =N, for all
x€ Q. Forwe H2we definep : R — Rby ¢ (|w|)(Q) :=h? S0 ¢ (|w(X)|), where
|zl = /22 + 2. In particular we define theotal variation of u by setting¢ (t) =t
andw = 0u, i.e.,|0u[(Q) := "? T yco |Ou(x)|.

For an operatof we denote byl * its adjoint. Further we introduce thiiscrete
divergencediv : H? — H defined by div= —* (0" is the adjoint of the gradient
), in analogy to the continuous setting. The symbol 1 indisdhe constant vector
with entry values 1 andglis the characteristic function & C Q.

For a convex functional : H — R, we define thesubdifferentialof J atv € H as
the set valued mappingJ(v) := 0 if J(v) = anddJ(v) := {v: e H : (v;,u— V) +
J(v) <J(u) VYue H} otherwise. It is clear from this definition that€0dJ(v) if
and only ifvis a minimizer of]. Whenever the underlying space is important, then
we write d;J or dnJ.

3 Subspace Correction Approaches

As in [5] we are interested in minimizing by means of subspaareection the fol-
lowing functional

J(u) = as||Su—gs|l(q) + T Tu=grllfz ) + @ (10u)(Q), 1)

whereS T : H — H are bounded linear operatogs, gr € H are given data, and
as, at > 0 with as+ a1 > 0. We assume thdtis bounded from below and coercive,
i.,e.,{ueH : J(u) <C} is bounded inH for all constantsC > 0, in order to
guarantee that (1) has minimizers. Moreover we assume that

(Ag) ¢ : R — R is a convex function, nondecreasingRi with

(i) $(0) = 0.

(i) cz—b < ¢(2) < cz+b, for all ze R™ for some constant > 0 andb > 0.

Note that for the particular examplg(t) =t, the third term in (1) becomes the
well-known total variation ofiin Q and we call (1) thé.2-L2-TV model.

Now we seek to minimize (1) by decomposifginto two subspace¥; and
V, such thatH = Vi +V,. Note that a generalization to multiple splittings can be
performed straightforwardly. However, here we will resttiourselves to a decom-
position into two domains only for simplicity. By we denote the orthogonal com-
plement ofV; in H and we define bﬂ/ic the corresponding orthogonal projection
ontoV fori=1,2.
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With this splitting we want to minimizd by suitable instances of the following
alternating algorithm:

Choose an initiali® =: ul” +u € V4 +V,, for exampleu® = 0, and iterate

(+1) _ i ()
u = argu[g{/rl\\](ul +u,’),
u"Y = arg mind (W™ 4 uy), (2)
U26V2
u(H+D) = u:(LnJrl) + u(szrl)

Differently from the case in [5], where the authors solved #&xact subspace
minimization problem in (2), which is in general not alwayasidy manageable,

we suggest now to approximate the subdomain problems bl&dcsurrogate
functionals (cf. [2, 3, 4]): Assuma, u; € Vi, u_;j € V_j, and define

I(Ui + Ui, a+ui) i= I(u +ui) + ar (S + Ui — (@t ui) [ % g 3)

—|IT(ui+u_—(a+ u_i))Hfz(Q))
= Jui+u-i)+ar (B)u - alZ g~ ITu-a)l%))

fori=1,2and—i € {1,2}\ {i}, whered > || T||2. Then an approximate solution to
miny ev: J(U1 + Up) is realized by using the following algorithm: Foﬁp) eV,

u = arg mi/nJS(ui +uu?uy), >0,
Ui €V

whereu_; € V_ fori = 1,2 and—i € {1,2}\ {i}.
The alternating domain decomposition algorithm reads #sefollows:

Choose an initial(® =: G(lo) + 0(20) € Vi + Vs, for exampleu(© = 0, and iterate

(n+1,0) _ ~(n)
Uy =Uu;’,
urhe argu[pgl/rIJs(ul o Wm0 gy r=o,... L—1,
(n+1,0) ~(Nn)
u, =Uuy",
u(2n+1,m+1) _ arguzmeig‘]s(u(lnﬂ,u Uy, u(2n+1,m) + u(ln+17L))’ m=0,...,.M—1,
u(+d) = u(1n+1,L) + ugnJrlA,M)7
Y = g umD,
Y = xo-um ),

4)
whereyxi, x2 € H have the properties (§1+ x2 =1 and (i) x; € Vi fori = 1,2. Let
K = max{ [ X1, || X2lle } < co.

The parallel version of the algorithm in (4) reads as follows
Choose an initial(©® =: ﬁ(lo) + U(Zo) € V1 + Vs, for exampleu© = 0, and iterate
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u(n+1,0) ﬁ(n)
1 10

u(1n+1,é+1) arg m|nJS(u1+u( ) (n+1/) +u(2 ))7 (=0,...,L—1,

o,

uy" ™Y = arg mian(G(l VU 4 aY), m=0,.. M—1,  (5)
u(n+) - "t 4y (;+1M)+u( )7
ng-&-l) = X1 u(n+1)
l]<2n+l) =X u(n+1)

Note that we prescribe a finite numdeandM of inner iterations for each sub-
space, respectively. Hence we do not get a minimizer of tiggnad subspace min-
imization problems in (2), but approximations of such miiziens. Moreover, ob-

serve thati™D = g™ 4+ g™ with u™™ 2 6™ fori = 1,2, in general.

3.1 Convergence Properties

In this section we state convergence properties of the siglesporrection methods
in (4) and (5). In particular, the following three proposits are direct consequences
of statements in [3, 4, 5].

Proposition 1. The algorithms in (4) and (5) produce a sequefa®),, in H with
the following properties:

1. Ju™) > J(u™D) for all n € N (unless (Y = u™+b);

2. 1iMp o0 ”u (n+1,0+1) (n+10) ”[2 @ —0andlimy ;e ||u (n+1,m+1) u(n+1m 2

Oforall ¢ {0 L 1} and me {0,...,M —1};
3. 1Moo UMY — U] 20 = O;

4. the sequencei™), has subsequences that converge in H.

2(

The proof of this proposition is analogous to the one in [®pBsition 5.4] and [4,
Theorem 5.1].

Proposition 2. The sequence(sii(”))n fori = 1,2 generated by the algorithm in (4)
or (5) are bounded in H and hence have accumulation pcﬁﬁ"& respectively.

Proof. By the boundedness of the sequeng®), we obtain||a” || = [xu™|| <
K[uM|| < C < e and hencéd”), is bounded foi = 1,2. O

Remark 1From the previous proposition it directly follows by the coeity as-

sumption onJ that the sequencest™), and (uy"™), are bounded for all ¢
{0,...,L} andme {0,...,M}.
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Proposition 3. Let u(1°°), u(2°°), and Gi(w) be accumulation points of the sequences
W™, (UM™),,, and (@), generated by the algorithms in (4) and (5), then
u® =a®), fori=1,2

One shows this statement analogous to the first part of thef pf¢3, Theorem
5.7].

Moreover, as in [5] we are able to establish an estimate afigtance of the limit
point obtained from the subspace correction method to tleeglobal minimizer.

Theorem 1. Let u* be a minimizer of J and® an accumulation point of the se-
quence(u™), generated by the algorithm in (4) or (5). Then we have théieeit

1. U*) is a minimizer of J or
2. there exists a constaat> 0 such that foratd < € we have

@ 1Nl

||u( )_u Hﬁ(g) < m7

where||f} || 2(q) = min{||r7£°°)|\[;2(9), Hném)nez(g)} andn(™ is an accumulation
point of the sequende) ™), fori = 1,2.

In particular, under the additional assumptions tteat > 0 and T*T is positive
definite with smallest Eigenvalue> 0, then we have

o Ul < o
for & < 20.
Proof. We have that
wrtt = argu?gi/r;\ls(ul oy a4 gy
= argLEQLn{JS(u + 0(2") , u(l”H’L*l) + G(Z")) ITRsU= O} :

Then, by [6, Theorem 2.1.4, p. 305] there exists;éﬂ’Tl) € Rangerq,lc)* ~Vf such
that
0c dHJs(_+a(2n)7u(1n+1,L—1) +G(2n))(u(1n+1,L))+n£n+l). ©)

since(u{™™)y,, (U™ and (6"), are bounded and based on the fact that
dJS(E,E) is compact for amé,g € H we obtain that(n{n))n is bounded, cf. [5,
Corollary 4.7]. By noting thatu{™ ")), and (u{""* %), have the same limit for
n— oo, see Proposition 1, we subtract a suitable subsequerizewith limits n£°°),
™), andus™ such that (6) is still valid, cf. [7, Theorem 24.4, p 233],.i.8 ¢

Ondr (- + 057 ul™ + a5y (ul™) +ni*). By the definition of the subdifferential and

Proposition 3 we obtain



6 Michael Hinternilller and Andreas Langer

J(u)) = F(u)u*)) < Fvu ) + (™) ul® — vy

IA

J
I+ 1017 21U V| 2

IN

for all v e H. Similarly one can show thatu(®)) < J5(v,u®)) + [ 5™ 2 Ut —
V|2 for all ve H, and hence we have

I() < PWU™) + 1 2 U™ =V

for allve H, wherel|f) [ 2(q) = min{|In;™ |2, 5™ () -
Letu* € argmin,cy J(u). Then there exists@> 0 such thad(u®)) = J(u*) +p.
1. If p =0, then immediately follows that*) is a minimizer ofJ.
2. If p > 0, then since|u(® — u*||2(q) < B < +, there exists ag > 0 such that
£B2 < p and hence we gal(u(®)) > J(u*) + ¢[[u’®) — Ul q).

Settingv = u* above and using the last inequality we obtain

aT (5||u* _ U(M)HEZ(Q) — || T (u* - u(°°>)||[?2(g>) + ||F7|\52(Q) Hu<°°) _ u*”[z(g) @)

> U™~ |y

From the latter inequality we geftfj||> > (¢ — a7d)|[u™) — u*{|2(q) and conse-
quently foratd < € .
171200 .
E—atd —
If additionally at > 0 and T*T is symmetric positive definite with smallest
Eigenvalueo > 0, then we get that = a7 g, cf. [5]. Then (7) reads as follows

U™ — U 2(q)-

a1 (0~ B)|u” — %) + Tl T(U ) 2 < 1] 20 U — 0] ()

and by using once more the symmetric positive definitenessastion onl *T we
obtain from the latter inequality that

a1 (20 = &)U —u|% o) < 1Al 201U = Ul 2(0)-

at(20-9)"

If 20 > & then we gef|u” —u®) |2 g <

4 Numerical Experiments

We present numerical experiments obtained by the paradjetithm in (5) for the
application of image deblurring, i.6S= T are blurring operators argl |Ju|)(Q) =
|Cu|(Q) (the total variation ofu in Q). The minimization problems of the subdo-
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Initial Picture Initial Picture

(@ k)

Fig. 1 Image of size 192& 2576 pixels which is corrupted by Gaussian blur with kernel size
15x 15 pixels and standard deviation 2, 4% salt-and-pepper naidezaussian white noise with
zero mean and variancedd. In (a) decomposition of the spatial domain into stripes and)im(o
windows.

mains are implemented in the same way as described in [5] taygitat the func-
tional to be considered in each subdomain is now the stractiwex functional in
3).

We consider an image of size 192@576 pixels which is corrupted by Gaussian
blur with kernel size 1% 15 pixels and standard deviation 2. Additionally 4% salt-
and-pepper noise (i.e., 4% of the pixels are either flippeblack or white) and
Gaussian white noise with zero mean and varian@& & added.

In order to show the efficiency of the parallel algorithm in {& decomposing
the spatial domain into subomains, we compare its perfoceaiith thel1-L2-TV
algorithm presented in [5], which solves the problem on filRowithout any split-
ting. We consider splittings of the domain in stripes, c§ute 1(a), and in windows
as depicted in Figure 1(b) for different numbers of subdom@) = 4,16,64).

The algorithms are stopped as soon as the enkrgaches a significance level
J*, i.e., whend(u™) < J* for the first time. For reason of comparison we experi-
mentally choosd* = 0.059054, i.e., we once restored the image of interest until we
observed a visually satisfying restoration and the assatienergy-value a¥‘. In
the subspace correction algorithm as well as inlth&2-TV algorithm we restore
the image by settingls = 0.5, at = 0.4, andd = 1.1. The computations are done
in Matlab on a computer with 256 cores and the multithreadiption is activated.

Table 1 presents the computational time and number of iberathe algorithms
need to fulfill the stopping criterion for different numbdrsubdomains. We clearly
see that the domain decomposition algorithmDo« 4,16, 64 subdomains is much
faster than th&1-L2-TV algorithm O = 1). Since a blurring operator is in general
non-local, in each iteration™ has been communicated to each subdomain. There-
fore the communication time becomes substantial for smditinto 16 or more do-
mains such that the algorithm needs more time to reach tpeistcriterion.

In Figure 2 we depict the progress of the minimal Lagrangetipligr n(" :=

mini{||ni(")|\gz(g)}, which indicates that the parallel algorithm indeed cogesrto
a minimizer of the functional.
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Table 1 Restoration of the image in Figure 1: Computational performg@&dJ time in seconds
and the number of iterations) for the glohatL2-TV algorithm and for the parallel domain decom-
position algorithms witho; = 0.5, a = 0.4 for different numbers of subdomains & 4,16,64).

# Domains window-splitting stripe-splitting
D=1 (1L%TValg): 11944 s/131 it

D=4: 2374s /271t 2340s/27it
D =16: 29145/ 271t 2982s/27it
D =64: 7833s/27it 8797 s/28it
Fig. 2 The progress of the 210 Nomofth Lagange utplerin s o
minimal Lagrange multiplier '4

n(n)
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