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Abstract. The minimization of a functional composed of a non-smooth and non-additive regularization term
and a combined L1 and L2 data-fidelity term is proposed. It is shown analytically and numerically that the new
model has noticeable advantages over popular models in image processing tasks. For the numerical minimization
of the new objective, subspace correction methods are introduced which guarantee the convergence and monotone
decay of the associated energy along the iterates. Moreover, an estimate of the distance between the outcome of
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1. Introduction. Subspace correction is a divide and conquer technique originally proposed
for the numerical solution of partial differential equations. Algorithmically this is achieved by
iteratively solving on each subspace an appropriately defined subproblem, which, in a variational
setting, typically amounts to minimizing a smooth energy. For the overall algorithm, conver-
gence, rate of convergence, and the independence of the rate of convergence from the mesh size of
discretization are well-established.

For non-smooth problems, the resulting splitting algorithms still work fine as long as the en-
ergy splits additively with respect to the subspace decomposition. For such problems convergence
and sometimes even rate of convergence are ensured; see e.g. [27, 49]. Moreover, for image deblur-
ring problems preconditioning effects of a specific subspace correction algorithm for minimizing
a non-smooth energy are shown in [51]. For non-smooth and non-additive energies, however, the
research on subspace correction methods is far from being complete, and for some problem classes
counterexamples do exist indicating failure of subspace correction; see e.g. [28, 52].

From a computational point of view, one of the appeals of subspace correction methods is
given by the fact that parallel algorithms can be devised which exploit the capabilities of mul-
tiprocessor or multicore computer architectures. Main advantages of associated iterative solvers
include (i) dimension reduction; (ii) enhancement of parallelism; (iii) localized treatment of com-
plex and irregular geometries, singularities and anomalous regions; (iv) and sometimes reduction
of the computational complexity of the underlying solution method. Among the important repre-
sentatives of this algorithm class one finds the Jacobi method, the Gauss-Seidel method, point or
block relaxation methods, multigrid methods, and domain decomposition methods. For further
details on subspace correction and associated solvers we refer to [54].

In this paper we focus on subspace correction methods for a class of non-smooth and non-
additive problems which arise in mathematical image processing. In this area the importance of
devising such methods is clearly motivated by the continuous improvement of imaging hardware,
which allows to increase resolutions or to acquire vast amounts of data. In the context of variational
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2 M. HINTERMÜLLER and A. LANGER

methods in image processing, this may lead to extremely large-scale problems which need to be
processed routinely.

In image restoration, the non-smooth and non-additive total variation (TV), proposed in [45]
for image denoising, plays a fundamental role as a regularization technique, since it preserves edges
and discontinuities in images. In this context, one typically minimizes an energy that consists of a
data-fidelity term, which enforces the consistency between the recovered and the measured image,
and the total variation as the regularization term. The choice of the data term usually depends
on the type of noise contained in the measured image data. In this vein, for images corrupted by
Gaussian noise a quadratic L2 data-fidelity term has been successfully used in first order methods,
see e.g. [11, 12, 13, 17, 19, 20, 21, 22, 24, 32, 40, 43, 53, 57], as well as in second order methods,
see e.g. [34]. In this approach, which we refer to as the L2-TV model, the image u is recovered
from the observed data g by solving

min
u
α‖Tu− g‖2L2(Ω) + |Du|(Ω), (1.1)

where Ω ⊂ R2 is an open bounded set with Lipschitz boundary, T is a bounded linear operator
modelling the image-formation device (if the image is only corrupted by noise one sets T = I),
and α > 0 is a parameter. We recall, that for u ∈ L1(Ω)

V (u,Ω) := sup

{∫
Ω

udiv φdx : φ ∈ [C1
c (Ω)]2, ‖φ‖∞ ≤ 1

}
is the variation of u. In the event that V (u,Ω) <∞ we denote |Du|(Ω) = V (u,Ω) and call it the
total variation of u in Ω; see [2] for more details. If u ∈W 1,1(Ω), then |Du|(Ω) =

∫
Ω
|∇u|dx. The

L2-TV model usually does not yield a satisfactory restoration in the presence of salt-and-pepper
noise, where the noisy image g, throughout assumed to have a dynamic range of cmin ≤ g ≤ cmax,
is given by

g(x) =


cmin with probability p1 ∈ [0, 1),

cmax with probability p2 ∈ [0, 1),

u(x) with probability 1− p1 − p2,

with 1 − p1 − p2 > 0 [15]. Here, p1 + p2 defines the noise level. Recently a non-smooth L1 data-
fidelity term was suggested in [1], which treats impulse noise (e.g. salt-and-pepper noise) more
successfully than a quadratic L2 data term [41, 42, 25], i.e., instead of (1.1) one considers

min
u
α‖Tu− g‖L1(Ω) + |Du|(Ω),

which we call the L1-TV model.
In the case of simultaneous Gaussian and salt-and-pepper noise the choice of the data-fidelity

is unclear, and the literature on this subject appears rather scarce. In order to accommodate
such situations, a two-phase reconstruction approach is suggested in [9]. In fact, in the first phase
(most of) the outliers are detected and in the second phase a variational functional consisting of
a Mumford-Shah regularizer, which renders the problem non-convex, is minimized. In contrast to
this development we tackle the problem of removing simultaneous Gaussian and salt-and-pepper
noise by optimizing a convex functional with a total variation regularizer and a combination of a
quadratic L2-term and a non-smooth L1-term. It turns out in our numerical experiments that such
a combined data-fidelity term well suits the restoration task; see Figure 2.2 below. Analytically
we show by means of an explicit example that the minimization of the newly proposed functional
has noticeable advantages over the standard functionals, L2-TV or L1-TV model. Algorithmically,
we adapt the approach in [4], which was originally proposed for solving the L1-TV model only, to
our case of a combined data-fidelity term.

As all of the aforementioned solvers for TV-minimization are confined to small and medium
scale problems only, we propose and analyze subspace correction, domain decomposition, and
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coordinate descent methods as these are fundamental for reducing the overall problem to a finite
number of subproblems with each of them of a size manageable for the above TV solvers.

Recently, in [28, 29, 30] non-overlapping and overlapping domain decomposition strategies
were introduced for solving the L2-TV problem. In this context, the major difficulty lies in the
correct treatment of the interfaces of the domain decomposition patches, i.e. the preservation of
crossing discontinuities and the correct matching where the solution is continuous. We emphasize
that well-known approaches as those in [10, 18, 46, 47] are not directly applicable to the non-
smooth and non-additive L2-TV problem. In [29, 30] the convex objective under some linear
constraint, ensuring the correct treatment of the internal interfaces, was iteratively minimized on
each subdomain. While in these two papers an implementation guaranteeing convergence and
monotonic decay of the objective energy is provided, convergence to the global minimizer of the
L2-TV problem cannot be ensured, in general. For one-dimensional problems, in [29] a proof is
presented which establishes convergence of the overlapping domain decomposition algorithm to
the global solution. We note that although this proof is carried out for any finite dimensional
space, it is not yet clear how to prove convergence to the expected minimizer without further (and
practically possibly critical) assumptions on the overlapping region for higher dimensions (d > 1).

In [28] a wavelet decomposition method is presented with similar properties as the aforemen-
tioned non-overlapping domain decomposition methods. In that paper, an additional condition
is imposed which allows to establish global optimality of the limit point obtained by the domain
decomposition method. Unfortunately, despite the good practical behavior of the method, this
condition cannot be ensured to hold in general, as counterexamples have shown. Thus, with the
aforementioned condition one can only check a posteriori whether the algorithm found the global
minimizer or whether it failed to do so. Moreover, no error estimates are available.

In the present paper we generalize the subspace correction strategy to more general functionals,
which consist of a non-smooth and non-additive regularization term and a weighted combination of
an L1-term and a quadratic L2-term; see (2.1) below. In this setting, the L2-TV model considered
in [28, 29, 30] and the L1-TV model are special instances. Note that the methods in [28, 29, 30]
differ from our approach. In fact, in [28, 29, 30] each subspace minimization problem is approxi-
mated by a surrogate functional minimization, while we are minimizing on each subspace the exact
subspace minimization problem. Thus, a different convergence analysis is required. Similarly to
the domain decomposition methods in [29, 30] we are able to show that our subspace correction
methods for the newly introduced functional are guaranteed to converge and to monotonically
decrease the energy. In addition, we are able to establish an estimate of the distance of the limit
point obtained from the subspace correction method to the true global minimizer. With the help
of this estimate, we demonstrate in our numerical experiments that the sequence generated by our
proposed algorithm indeed approaches the global minimizer of the objective functional.

The rest of the paper is organized as follows: In Section 2 we state the problem of interest
and we propose a solution method for the global minimization problem. Moreover, we motivate
the choice of the objective functional by analyzing theoretically an illustrative example as well by
numerical experiments. Our alternating and parallel subspace correction methods are introduced
in Section 3 in a Banach space setting where we also state some convergence properties. In
Section 4 we describe the problem in a discrete setting and show optimality properties of our
subspace correction methods which allow us to estimate the distance of a limit point obtained by
subspace correction to the minimizer of the total energy. In Section 5 we present our subspace
correction methods for the special cases of overlapping and non-overlapping domain decomposition,
respectively. Details on the implementation of the solvers for the domain decomposition methods
are provided. Finally we show sequential and parallel numerical experiments for total variation
minimization.

2. Image Restoration with Mixed L1/L2 Data-Fidelity. We are interested in solving
the following minimization problem

min
u∈L2(Ω)

Jα1,α2
(u) := α1‖T1u− g1‖L1(Ω) + α2‖T2u− g2‖2L2(Ω) + ϕ(|Du|)(Ω), (2.1)
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where Ti : L2(Ω) → L2(Ω) is a bounded linear operator, gi ∈ L2(Ω) is a given datum, αi ≥ 0 for
i = 1, 2, with α1 +α2 > 0, Ω ⊂ Rd, d ∈ N, and ϕ(| · |) is a convex function of measures representing
regularization.

We assume that ‖Ti‖ < 1 for i = 1, 2, which is not at all a restriction, as a proper rescaling
of the problem reestablishes the desired setting, whenever a norm exceeds 1. In what follows we
make the assumption that Jα1,α2

is bounded from below and coercive, i.e., {Jα1,α2
≤ C} = {u ∈

L2(Ω) : Jα1,α2
(u) ≤ C} is bounded in L2(Ω) for all constants C > 0, in order to guarantee that

problem (2.1) has solutions. Moreover we assume that
(Aϕ) ϕ : R→ R is a convex function, nondecreasing in R+ with

(i) ϕ(0) = 0.
(ii) cz − b ≤ ϕ(z) ≤ cz + b, for all z ∈ R+ for some constant c > 0 and b ≥ 0.

Note that for the particular example ϕ(t) = t, the third term in (2.1) becomes the well-known
total variation of u in Ω and we call then (2.1) the L1-L2-TV model. Other functions which fulfill
assumption (Aϕ) are ϕ(t) =

√
1 + t2 − 1 (the function of minimal surfaces) and ϕ(t) = log cosh t

[50].

2.1. Qualitative Behaviour of the L1-L2-TV Model. In order to motivate our proposed
model (2.1), we use a simple and illustrative example in 2D, where ϕ(t) = t, which we compare
with the L1-TV model, i.e., when α2 = 0 in (2.1), and with the L2-TV model, i.e., when α1 = 0
in (2.1).

Example 2.1. Let the observed image g1 = g2 be the characteristic function 1Br(0) of a disk
Br(0) centered at the origin with radius r > 0. We are interested in the explicit solution of the
problem in (2.1) when Ω = R2 and ϕ(t) = t for the following three different cases: (i) α1 = 0, α2 >
0 (L2-TV), (ii) α1 > 0, α2 = 0 (L1-TV), (iii) α1 > 0, α2 > 0 (L1-L2-TV), when the operator
T1 = T2 = I is the identity operator, respectively.

For the first two cases we recall the solutions found in [16, 39].
(i) For α1 = 0, α2 > 0 the unique minimizer u0,α2 is given by

u0,α2 =

{
0 if 0 ≤ r < 1

α2
,(

1− 1
α2r

)
1Br(0) if r ≥ 1

α2
.

(ii) For α1 > 0, α2 = 0 a minimizer uα1,0 is given by

uα1,0 ∈


{0} if 0 ≤ r < 2

α1
,

{c1Br(0) : c ∈ [0, 1]} if r = 2
α1
,

{1Br(0)} if r > 2
α1
.

(iii) For α1, α2 > 0 one can reason that every minimizer has to be of the form c1Br(0) for
c ∈ [0, 1]. Therefore we just need to minimize the function

Jα1,α2
(c1Br(0)) = α1πr

2|1− c|+ α2πr
2(1− c)2 + 2πrc

over c ∈ [0, 1]. Then the optimality condition for c is given by

−α1πr
2 − 2α2πr

2(1− c) + 2πr = 0,

which is equivalent to

c =
2α2 + α1

2α2
− 1

α2r
.

Hence, the unique minimizer is given by

uα1,α2
=


0 if 0 ≤ r < 2

2α2+α1
,(

2α2+α1

2α2
− 1

α2r

)
1Br(0) if 2

2α2+α1
≤ r ≤ 2

α1
,

1Br(0) if r > 2
α1
.
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From this example we clearly see the difference between the L2-TV model and the L1-TV
model. When the L1-fidelity is used, then the solution is constant except at a special value
(r = 2

α1
) where it undergoes a sudden transition. When in addition to the L1-fidelity also the

L2-term is present then the solution is constant except in an interval ( 2
2α2+α1

≤ r ≤ 2
α1

) where it

experiences a smooth transition. On the contrary, when only the L2-fidelity plus TV-term is used
then the solution is only constant for 0 ≤ r < 2

α2
and hyperbolically increasing otherwise.

The differences between the L2-TV model and the L1-TV model result in the following ob-
servation: Fix α1 = α2 = α > 0 and set, as in Example 2.1, g1 = g2 = 1Br(0) and T1 = T2 = I.

Then the solution u0,α of the L2-TV model is identically 0 if r < 1
α . This is clearly an advantage

over the L1-TV model, where uα,0 = 0 if r < 2
α , since smaller features can be maintained with

the L2-TV model. On the contrary, the L2-TV model is not able to preserve the original features
perfectly (except if α =∞) but only obtains them with a loss of energy, i.e., u0,α =

(
1− 1

αr

)
1Br(0)

if r ≥ 1
α . This is different for the L1-TV model, where we have that uα,0 = 1Br(0) if r > 2

α and
hence features can be perfectly preserved. This is naturally a clear advantage of the latter model.

For the combined L1-L2-TV model, we observe that uα,α = 0 if 0 ≤ r < 2
3α and hence even

smaller features as with the L2-TV model can be maintained. But still we are able to preserve
original features perfectly as in the L1-TV model. Moreover the transition between the just
mentioned constant states is smooth, which is clearly a property coming from the L2-term, which
renders the solution unique.

2.2. Practical Behaviour. We first specify a solution algorithm for the model in (2.1) and
then we study the quantitative behaviour of this model and the proposed method by means of a
benchmark example.

A Solution Algorithm. For computing a minimizer of the global problem in (2.1) we sug-
gest an algorithm, which is an adaptation of a method that was originally proposed for L1-TV
minimization problems in [4]. For this purpose we replace Jα1,α2

by the functional

α1‖v‖L1(Ω) +
1

2γ
‖T1u− g1 − v‖2L2(Ω) + α2‖T2u− g2‖2L2(Ω) + ϕ(|Du|)(Ω), (2.2)

where γ > 0 is small, so that we have g1 ≈ T1u − v. Actually for γ → 0 (2.2) approaches the
objective functional in (2.1). Now we minimize (2.2) with respect to u and v, which we perform
in the following alternating way:

(1) For fixed u solve

min
v∈L2(Ω)

α1‖v‖L1(Ω) +
1

2γ
‖T1u− g1 − v‖2L2(Ω). (2.3)

The minimizer v∗ of (2.3) can be easily computed via a soft-thresholding, i.e., v∗ =
ST(T1u− g1, γα1), where

ST(g, β)(x) =


g(x)− β if g(x) > β,

0 if |g(x)| ≤ β,
g(x) + β if g(x) < −β,

(2.4)

for all x ∈ Ω.
(2) For fixed v solve

min
u∈L2(Ω)

1

2γ
‖T1u− g1 − v‖2L2(Ω) + α2‖T2u− g2‖2L2(Ω) + ϕ(|Du|)(Ω). (2.5)

This step is realized on the surrogate functional

S(u, a) :=
1

2γ
‖T1u− g1 − v‖2L2(Ω) + α2‖T2u− g2‖2L2(Ω) + ϕ(|Du|)(Ω)

+
1

2γ

(
‖u− a‖2L2(Ω) − ‖T1(u− a)‖2L2(Ω)

)
+ α2

(
‖u− a‖2L2(Ω) − ‖T2(u− a)‖2L2(Ω)

)
=

1

2γ
‖u− z1‖2L2(Ω) + α2‖u− z2‖2L2(Ω) + ϕ(|Du|)(Ω) + ψ,
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with a, u ∈ L2(Ω) and where z1 = z1(a) = a+T ∗1 (g1 + v−T1a), z2 = z2(a) = a+T ∗2 (g2−
T2a), and ψ is a function independent of u. Note that

min
u∈L2(Ω)

S(u, a)⇔ min
u∈L2(Ω)

∥∥∥∥u− γ

1 + 2α2γ

(
1

γ
z1 + 2α2z2

)∥∥∥∥2

L2(Ω)

+
2γ

1 + 2α2γ
ϕ(|Du|)(Ω).

(2.6)
For ϕ(t) = t (2.6) is a variant of the ROF-problem [45]. There exist several numerical
methods for solving the ROF-problem efficiently; see for example [11, 17, 19, 22, 24, 32,
33, 34, 40, 43]. Hence an approximate solution of (2.5) can be computed by the following
iterative algorithm: Initialize u(0) ∈ L2(Ω) and iterate

u(`+1) = arg min
u∈L2(Ω)

S(u, u(`)) ` ≥ 0. (2.7)

If T1 = T2 = I and ϕ(t) = t then (2.5) becomes the ROF-problem, i.e.,

min
u∈L2(Ω)

∥∥∥∥u− γ

1 + 2α2γ

(
1

γ
(g1 + v) + 2α2g2

)∥∥∥∥2

L2(Ω)

+
2γ

1 + 2α2γ
|Du|(Ω),

which can be solved directly by means of the aforementioned methods.
Numerical Examples. In Example 2.1 above we compute the exact solution of the minimization

problem (2.1) with ϕ(t) = t. There we show that the newly proposed L1-L2-TV model better
preserves the original signal than either the L1-TV model or the L2-TV model. In this section
we support this result by numerical computations for different choices of α1 and α2 in (2.1) for
ϕ(t) = t and for a given noisy image g (= g1 = g2), which is specified below. Note that the
dynamic range of all image data considered in this paper is [cmin, cmax] := [0, 1]. As a comparison
for the different restoration qualities of the image we use the PSNR (peak signal-to-noise ratio)
given by

PSNR = 20 log
1

‖uorg − u∗‖
,

where uorg denotes the original image before any corruption and u∗ the restored image. In general,
when comparing PSNR-values, large values indicate a better reconstruction than smaller values.

The chosen test image uorg, shown in Figure 2.1(a), consists of squares of various sizes. We are
interested in selecting αi, i = 1, 2, such that the original image uorg is preserved best. Therefore
we compute the minimizer of the L1-L2-TV model with g = uorg and Ti = I, i = 1, 2, for
α1, α2 ∈ {0, 0.1, 0.2, ..., 0.9, 1, 1.5} and depict the obtained PSNR values in Figure 2.1(b). Note
that for α1 = α2 = 0 we set the PSNR value to the default value of 0. For α2 = 0 and α1 > 0 we
see the typical behavior of the L1-TV model. In fact, depending on the size of α1 different scales
of the image features are preserved exactly. Typically, for decreasing α1 features at smaller scales
are suddenly “lost” in the reconstruction whereas other features are still recovered perfectly. Also
the fading-away effect of image features at various scales depending on the decreasing choice of
α2 of the L2-TV model can be seen clearly. However, Figure 2.1(b) shows that a combination
of α1 > 0, α2 > 0 gives always a better restoration then setting one of the parameters to 0,
respectively.

In the second experiment we corrupt the original image of Figure 2.1(a) by Gaussian noise
and salt-and-pepper noise, i.e., g is now the image in Figure 2.2(a). Then we again compute the
minimizer of the L1-L2-TV model for α1, α2 ∈ {0, 0.1, 0.2, ..., 1} and depict the obtained PSNR
values in Figure (2.2)(b). The maximal PSNR value is reached for α1 = 0.7 and α2 = 0.4, which
shows that for a combination of these two noise types the L1-L2-TV model outperforms the L1-TV
model as well as the L2-TV model.

For the sake of a performance reference we also compare our L1-L2-TV minimization algo-
rithm with the frequently used ROAD-trilateral filter [31], which is designed to remove a mix-
ture of Gaussian noise (with zero mean and variance σ) and impulse noise. This filter is based
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(a) (b)

Fig. 2.1. (a) Phantom image. (b) PSNR-values of the scale space generated by minimizing the L1-L2-
TV model for different choices of the parameters α1 and α2.

(a) (b)

Fig. 2.2. (a) Image of Figure 2.1 corrupted by Gaussian noise (with zero mean and variance σ = 0.1)
and 75% salt-and-pepper noise (more precisely p1 = 0.5 and p2 = 0.25). (b) PSNR-values of the minimizer
of the L1-L2-TV model for different choices of the parameters α1 and α2.

on a simple statistic to detect outliers in an image. For our comparison we restore the Bar-
bara image, see Figure 2.3(a), and the Cameraman image, see Figure 2.3(b), for salt-and-pepper
noise with p1 = p2 ∈ {0.05, 0.15} and low levels of Gaussian noise, i.e. σ ∈ {5/255, 15/255},
as available in the literature. Here we further test the algorithms for higher levels of Gaussian
noise, i.e., σ ∈ {

√
0.02, 0.2}, plus salt-and-pepper noise, see Table 2.1. We also note that for

impulse noise dominated contamination of image data the implementation of strategies as for in-
stance the one in [14] and the references therein enhance the performance of the algorithm. In
the L1-L2-TV minimization algorithm we set Ti = I, i = 1, 2, α1 ∈ {0.1, 0.4, 0.7, 1, 1.3, 1.6, 2},
and α2 ∈ {0, 0.1, 0.4, 0.7, 1}. For the ROAD-trilateral filter we choose σS = 1, σI = 40/255,
σJ = 30/255, and σR is optimized between 10/255 and 50/255 as suggested in [23] with window-
size 3 × 3. In Table 2.1 we show the highest PSNR-values achieved in our experiments for both
methods. We observe that the L1-L2-TV minimization algorithm outperforms the ROAD-trilateral
filter with respect to PSNR and that α2 = 0 yields the best results in case of relatively high impulse
noise.

3. Subspace Correction Approach in L2(Ω). In order to enable or to speed-up the so-
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(a) (b)

Fig. 2.3. (a) The original Barbara image of size 512× 512 pixels. (b) The original Cameraman image
of size 256× 256 pixels.

σ p1 = p2 ROAD-trilateral L1-L2-TV
5/255 0.05 24.23 26.01 (α1 = 1.3, α2 = 1)

0.15 22.03 24.56 (α1 = 1.3, α2 = 0)
15/255 0.05 23.61 25.06 (α1 = 1.6, α2 = 0)

0.15 21.62 23, 78 (α1 = 1.3, α2 = 0)

Barbara
√

0.02 0.05 22.19 23.18 (α1 = 0.7, α2 = 0.4)
0.15 18.50 22.59 (α1 = 0.7, α2 = 0)√

0.02 0.005 22.51 23.66 (α1 = 0.7, α2 = 1)
0.01 22.49 23.60 (α1 = 0.7, α2 = 1)

0.2 0.005 21.30 23.05 (α1 = 0.4, α2 = 1)
0.01 21.26 23.05 (α1 = 0.4, α2 = 1)

5/255 0.05 23.96 27.12 (α1 = 1.3, α2 = 1)
0.15 21.83 25.01 (α1 = 1.3, α2 = 0)

15/255 0.05 23.72 25.92 (α1 = 1.3, α2 = 0.4)
0.15 21.31 23.98 (α1 = 1.3, α2 = 0)

Cameraman
√

0.02 0.05 22.02 23.49 (α1 = 1, α2 = 0.1)
0.15 18.45 22.33 (α1 = 1, α2 = 0)√

0.02 0.005 22.48 24.23 (α1 = 0.7, α2 = 1)
0.01 22.44 24.25 (α1 = 0.7, α2 = 1)

0.2 0.005 22.13 23.29 (α1 = 0.7, α2 = 0.7)
0.01 22.07 23.22 (α1 = 0.7, α2 = 0.7)

Table 2.1
PSNR results for the 512×512 pixels image “Barbara” and the 256×256 pixels image “Cameraman”.

The parameters of the ROAD-trilateral filter are σS = 1, σI = 40/255, σJ = 30/255, and σR is optimized
between 10/255 and 50/255 as suggested in [23]. For the L1-L2-TV minimization algorithm we show in
the brackets the parameters for which the best PSNR is obtained.

lution process subspace correction and domain decomposition methods offer the potential to split
the computational workload and to solve (in parallel) a sequence of more tractable problems. In
this sense we follow now the general philosophy of subspace correction and seek to minimize Jα1,α2

by decomposing L2(Ω) into two appropriate subspaces V1 and V2 such that L2(Ω) = V1 +V2. With
this splitting we aim to solve (2.1) by the following alternating algorithm:
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Choose an initial u(0) =: ũ
(0)
1 + ũ

(0)
2 ∈ V1 + V2, for example, u(0) = 0, and iterate

u
(n+1)
1 ← arg minu1∈V1 Jα1,α2(u1 + ũ

(n)
2 ),

u
(n+1)
2 ← arg minu2∈V2 Jα1,α2(u

(n+1)
1 + u2),

u(n+1) ← u
(n+1)
1 + u

(n+1)
2 ,

ũ
(n+1)
1 ← χ1 · u(n+1),

ũ
(n+1)
2 ← χ2 · u(n+1),

(3.1)

where χ1, χ2 ∈ L∞(Ω) have the properties (a) χ1 + χ2 = 1 and (b) χi ∈ Vi for i = 1, 2. Let

κ := max{‖χ1‖∞, ‖χ2‖∞} <∞ . Although ũ
(n+1)
1 is essentially not used in the above algorithm,

it is present for theoretical reasons. From the assumptions on χi we obtain that u(n) = (χ1 +

χ2)u(n) = ũ
(n)
1 + ũ

(n)
2 . Further, if the Vi’s are orthogonal, i.e., L2(Ω) = V1 ⊕ V2, then ũ

(n)
i = u

(n)
i

for all n ∈ N and, hence, in this case there is no need to introduce the variables ũ
(n)
i , cf. with

(5.2) below. The parallel version of the algorithm in (3.1) reads as follows:

Choose an initial u(0) =: ũ
(0)
1 + ũ

(0)
2 ∈ V1 + V2, for example, u(0) = 0, and iterate

u
(n+1)
1 ← arg minu1∈V1

Jα1,α2
(u1 + ũ

(n)
2 ),

u
(n+1)
2 ← arg minu2∈V2

Jα1,α2
(ũ

(n)
1 + u2),

u(n+1) ← u
(n+1)
1 +u

(n+1)
2 +u(n)

2 ,

ũ
(n+1)
1 ← χ1 · u(n+1),

ũ
(n+1)
2 ← χ2 · u(n+1).

(3.2)

We define the orthogonal complement of Vi in L2(Ω) by V ci , i.e., L2(Ω) = Vi ⊕ V ci and we
define by πVi the corresponding orthogonal projection onto Vi. Moreover, we define the domain
of a functional J : L2(Ω)→ R̄ as the set Dom(J ) = {v ∈ L2(Ω) : J (v) 6=∞}.

Note that the subspace minimization problems in (3.1) and (3.2) can be written as constrained
optimization problems of the form

min
v∈L2(Ω)

Jα1,α2(v) subject to (s.t.) Av = b,

where A : L2(Ω) → L2(Ω) is a linear and continuous operator on L2(Ω) and b ∈ L2(Ω). In
particular, we have

min
v∈L2(Ω)

Jα1,α2(v + b) s.t. πV ci v = 0,

or equivalently

min
v∈L2(Ω)

Jα1,α2(v) s.t. πV ci (v) = πV ci (b), (3.3)

where b = u
(n+1)
1 for the second minimization problem in (3.1) and b = ũ

(n)
j for the first mini-

mization problem in (3.1) and the minimization problems in (3.2) for i = 1, 2 and j ∈ {1, 2} \ {i}.
For any attainable b ∈ Vj , i.e., there exists an u ∈ Dom(Jα1,α2

) such that πV ci (u) = πV ci (b),
we observe that {u ∈ L2(Ω) : πV ci (u) = πV ci (b), Jα1,α2

(u) ≤ C} ⊂ {Jα1,α2
≤ C} for all C > 0,

i = 1, 2, and j ∈ {1, 2} \ {i}. Hence the former set is bounded by the coercivity assumption and

thus (3.3) has a solution, since every u
(n)
i and ũ

(n)
i generated by the algorithm in (3.1) and (3.2)

is attainable.
Proposition 3.1. The algorithms in (3.1) and (3.2) produce a sequence (u(n))n in L2(Ω)

with the following properties:
(i) Jα1,α2

(u(n)) ≥ Jα1,α2
(u(n+1)) for all n ∈ N;

(ii) The sequence (u(n))n has subsequences that weakly converge in L2(Ω) and BV (Ω).
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Proof. First we show (i) for the algorithm in (3.1). Observe that

Jα1,α2
(u(n)) = Jα1,α2

(ũ
(n)
1 +ũ

(n)
2 ) ≥ Jα1,α2

(u
(n+1)
1 +ũ

(n)
2 ) ≥ Jα1,α2

(u
(n+1)
1 +u

(n+1)
2 ) = Jα1,α2

(u(n+1)),

which proves the assertion.
To show (i) for the algorithm in (3.2) we consider first that

Jα1,α2
(u(n)) ≥ 1

2

(
Jα1,α2

(u
(n+1)
1 + ũ

(n)
2 ) + Jα1,α2

(ũ
(n)
1 + u

(n+1)
2 )

)
.

Moreover by convexity we obtain

Jα1,α2

(
u

(n+1)
1 + u

(n+1)
2 + ũ

(n)
1 + ũ

(n)
2

2

)
≤ 1

2

(
Jα1,α2

(u
(n+1)
1 + ũ

(n)
2 ) + Jα1,α2

(ũ
(n)
1 + u

(n+1)
2 )

)
and hence Jα1,α2

(u(n)) ≥ Jα1,α2
(u(n+1)).

From the above considerations we infer that Jα1,α2
(u(0)) ≥ Jα1,α2

(u(n)) for all n ∈ N. By the
coercivity condition on Jα1,α2

, (u(n))n is uniformly bounded in L2(Ω) and hence there exists a
weakly convergent subsequence. Moreover, due to the presence of ϕ(|Du|) in Jα1,α2 and α1+α2 > 0
we obtain that (u(n))n is bounded in BV (Ω). The compact embedding BV (Ω) ↪→ Lq(Ω), q < d

d−1 ,

implies that a subsequence (u(nk))k converges in Lq(Ω) to a limit u(∞) ∈ L2(Ω). By [3, Prop.
10.1.1] we even have that u(∞) ∈ BV (Ω), lim infn→∞ ϕ(|Du(nk)|)(Ω) ≥ ϕ(|Du(∞)|)(Ω), and u(nk)

weakly converges to u(∞) in BV (Ω), which concludes the proof.
Remark 3.2. Since the sequence (Jα1,α2(u(n)))n is monotonically decreasing and bounded

from below, it is also convergent.

Proposition 3.3. The sequences (u
(n)
i )n and (ũ

(n)
i )n for i = 1, 2 generated by the algorithm

in (3.1) or (3.2) are bounded in L2(Ω) and hence have weak accumulation points u
(∞)
i ∈ L2(Ω)

and ũ
(∞)
i ∈ L2(Ω), respectively.

Proof. The boundedness of (u(n))n implies the boundedness of (ũ
(n)
i )n, since

‖ũ(n)
i ‖L2(Ω) = ‖χiu(n)‖L2(Ω) ≤ κ‖u(n)‖L2(Ω) ≤ C <∞ for i = 1, 2, (3.4)

where κ as defined as on page 9. By the definition of u
(n+1)
1 and by the coercivity assumption

on Jα1,α2
we have that

(
u

(n+1)
1 + ũ

(n)
2

)
n

is bounded in L2(Ω), i.e., there exists a constant C > 0

such that ‖u(n+1)
1 + ũ

(n)
2 ‖L2(Ω) ≤ C for all n ∈ N. Since (ũ

(n)
2 )n is bounded in L2(Ω) by (3.4), the

triangle inequality yields

‖u(n+1)
1 ‖L2(Ω) − ‖ũ

(n)
2 ‖L2(Ω) ≤ ‖u

(n+1)
1 + ũ

(n)
2 ‖L2(Ω) ≤ C.

Hence (u
(n)
1 )n is bounded in L2(Ω). By similar arguments we get the L2(Ω)-boundedness of

(u
(n)
2 )n. Consequently (ũ

(n)
i )n and (u

(n)
i )n have a weakly convergent subsequence with limits ũ

(∞)
i

and u
(∞)
i in L2(Ω), respectively.

4. Subspace Correction Approach for the Discretized Problem. In this section we
analyze the method as it is implemented in finite dimensions upon discretization. We note, how-
ever, that a function space analysis appears possible as well, but would require careful handling
of weak and weak-∗ convergent sequences as well as properties of the convex subdifferential.

4.1. Notations and Basic Definitions. In the rest of the paper we work on a finite regular
mesh as a discretization of Ω. We approximate functions u by discrete functions, again denoted
by u with ∇u representing their gradient. Instead of the continuous functional (2.1) we consider
its discrete approximation, for ease again denoted by Jα1,α2 in (4.1) below. Note that the discrete
approximation Γ-converges to the continuous functional in (2.1), see [7, 37], and it has the same
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structural properties as the continuous one. Although in our applications we are mainly interested
in imaging problems, i.e., two-dimensional problems, our notation covers any d-dimensional space.

In our discrete setting we define the discrete d-orthotope Ω = {x1
1 < . . . < x1

N1
} × . . .× {xd1 <

. . . < xdNd} ⊂ Rd, d ∈ N, and the underlying “function space” is H = RN1×N2×...×Nd , where
Nj ∈ N for j = 1, . . . , d. Accordingly, V1 and V2 are appropriate subspace of H such that
H = V1 + V2 and by V ci we denote the orthogonal complement of Vi in H for i = 1, 2. For u ∈ H
we write u = u(x) = u(x1

i1
, . . . , xdid), where ij ∈ {1, . . . , Nj} and x ∈ Ω. Let h = xjij+1 − x

j
ij

be
the equidistant step-size for all j = 1, . . . , d. We define the scalar products of u, v ∈ H and of
p, q ∈ Hd by

〈u, v〉H = hd
∑
x∈Ω

u(x)v(x), and 〈p, q〉Hd = hd
∑
x∈Ω

〈p(x), q(x)〉Rd

with 〈y, z〉Rd =
∑d
j=1 yjzj for every y = (y1, . . . , yd) ∈ Rd and z = (z1, . . . , zd) ∈ Rd. In what

follows we consider different norms. In particular we use

‖u‖`p(Ω) =

(
hd
∑
x∈Ω

|u(x)|p
)1/p

, 1 ≤ p <∞,

and ‖u‖`∞(Ω) = supx∈Ω |u(x)|. Sometimes we do not specify the norm, i.e., we just write ‖ · ‖,
which indicates that any norm can be taken.

The discrete gradient ∇u is denoted by (∇u)(x) = ((∇u)1(x), . . . , (∇u)d(x)) with

(∇u)j(x) =
1

h
·

{
u(x1

i1
, . . . , xjij+1, . . . , x

d
id

)− u(x1
i1
, . . . , xjij , . . . , x

d
id

) if ij < Nj ,

0 if ij = Nj ,

for all j = 1, . . . , d and for all x ∈ Ω. Let ϕ : R→ R with

ϕ(|ω|)(Ω) := hd
∑
x∈Ω

ϕ(|ω(x)|),

for ω ∈ Hd, where |y| =
√
y2

1 + . . .+ y2
d. In particular we define the total variation of u by setting

ϕ(t) = t and ω = ∇u, i.e.,

|∇u|(Ω) := hd
∑
x∈Ω

|∇u(x)|.

For an operator T we denote by T ∗ its adjoint. Further we introduce the discrete divergence
div : Hd → H defined by div = −∇∗ (∇∗ is the adjoint of the gradient ∇), in analogy to the
continuous setting. In our case, the discrete divergence operator is explicitly given by

(div p)(x) =


1
h (p1(x1

i1
, . . . , xdid)− p1(x1

i1−1, . . . , x
d
id

)) if 1 < i1 < N1,

p1(x1
i1
, . . . , xdid) if i1 = 1,

−p1(x1
i1−1, . . . , x

d
id

) if i1 = N1,

+ . . .+


1
h (pd(x1

i1
, . . . , xdid)− pd(x1

i1
, . . . , xdid−1)) if 1 < id < Nd,

pd(x1
i1
, . . . , xdid) if id = 1,

−pd(x1
i1
, . . . , xdid−1) if id = Nd,

for every p = (p1, . . . , pd) ∈ Hd and for all x ∈ Ω. (Note that if the discrete domains Ω are not
discrete d-orthotopes, then the definitions of the gradient and divergence operators have to be
adjusted accordingly.) We will often use the symbol 1 to indicate the constant vector with entry
values 1 and 1D to indicate the characteristic function of the domain D ⊂ Ω.
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For a convex functional J : H → R̄, we define the subdifferential of J at v ∈ H as the set
valued mapping

∂J (v) :=

{
∅ if J (v) =∞,
{v∗ ∈ H : 〈v∗, u− v〉H + J (v) ≤ J (u) ∀u ∈ H} otherwise

at v ∈ H. It is clear from this definition that 0 ∈ ∂J (v) if and only if v is a minimizer of J . Since
we consider different spaces, namely H, Vi, it is sometimes useful to indicate this in the notation
of the subdifferential, i.e., we write ∂ViJ whenever the subdifferential of J is taken with respect
to Vi, for instance.

4.2. Properties of Subspace Correction Methods. In what follows we consider the
discrete functional

Jα1,α2
(u) = α1‖T1u− g1‖`1(Ω) + α2‖T2u− g2‖2`2(Ω) + ϕ(|∇u|)(Ω), (4.1)

where Ti : H → H is a bounded linear operator, gi ∈ H is a given datum, and αi ≥ 0 for i = 1, 2
with α1 + α2 > 0. Moreover, we assume that ϕ fulfills the assumption (Aϕ) and that Jα1,α2 is
bounded from below and coercive.

In the sequential and parallel algorithm in (3.1) and (3.2) we denote the difference between

the current subspace minimizer u
(n+1)
i and the initial value ũ

(n)
i by s(n+ i

2 ), i.e.,

s(n+ i
2 ) := u

(n+1)
i − ũ(n)

i , for i = 1, 2. (4.2)

It is easy to see that in the sequential domain decomposition algorithm

s(n+ i
2 ) = arg min

s
Jα1,α2(u(n) + (i− 1)s(n+ i−1

2 ) + s) s.t. πV ci s = 0

and in the parallel version

s(n+ i
2 ) = arg min

s
Jα1,α2

(u(n) + s) s.t. πV ci s = 0

for i = 1, 2. Moreover, for v, s ∈ H a quadratic Taylor expansion yields

min
s
Jα1,α2

(v+s) = min
s

2α2〈T2s, T2v−g2〉H+α2‖T2s‖2`2(Ω)+α1‖T1(v+s)−g1‖`1(Ω)+ϕ(|∇(v+s)|)(Ω).

Then the following lemma can be proven similarly to Lemma 1 of [49]. For its statement we
define the quantities v(i), i = 1, 2, as follows: For the sequential domain decomposition algorithm

in (3.1) choose v(i) = u(n) if i = 1 and v(i) = u(n) +s(n+ 1
2 ) for i = 2, while for the parallel domain

decomposition algorithm in (3.2) v(i) = u(n) for i = 1, 2.
Lemma 4.1. Let P (u) = α1‖T1u− g1‖`1(Ω) +ϕ(|∇u|)(Ω). For any v(i) ∈ H chosen according

to the underlying algorithm, let s̃ = s(n+ i
2 ) for i = 1, 2. Then

Jα1,α2
(v(i) + s̃) = Jα1,α2

(v(i)) + 2α2〈T2s̃, T2v(i)− g2〉H + α2‖T2s̃‖2`2(Ω) + P (v(i) + s̃)− P (v(i))

and

2α2〈T2s̃, T2v(i)− g2〉H + P (v(i) + s̃)− P (v(i)) ≤ −2α2‖T2s̃‖2`2(Ω).

Remark 4.2.
With α2 > 0, v(i) as above and s̃ = s(n+ i

2 ), a direct consequence of Lemma 4.1 is that

Jα1,α2
(v(i) + s̃)− Jα1,α2

(v(i)) ≤ −α2‖T2s̃‖2`2(Ω), (4.3)

where α2‖T2s̃‖2`2(Ω) > 0 whenever s̃ 6∈ kerT2. Note that the above descent property holds in

particular when T ∗2 T2 is invertible and ‖s̃‖ 6= 0.
Proposition 4.3. Assume that T ∗2 T2 is invertible and α2 > 0. Let the sequence (u(n))n be

generated by the algorithm in (3.1) or (3.2) and let s(n+ i
2 ) be defined as in (4.2). Then we have

the following statements:
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(i) ‖s(n+ i
2 )‖ → 0 for n→∞,

(ii) ‖u(n+1) − u(n)‖ → 0 for n→∞.

Proof. We begin by showing these statements for the sequential algorithm in (3.1). By the

minimality property of s(n+ i
2 ) we have that whenever ‖s(n+ i

2 )‖ 6= 0 then

Jα1,α2(u(n) + (i− 1)s(n+ i−1
2 ) + s(n+ i

2 )) < Jα1,α2(u(n) + (i− 1)s(n+ i−1
2 ))

for i = 1, 2. Note that u(n+1) = u(n) + s(n+ 1
2 ) + s(n+1). Analogously to Remark 3.2 we find that

Jα1,α2
is convergent and hence by the above observation we obtain

Jα1,α2
(u(n) + (i− 1)s(n+ i−1

2 ) + s(n+ i
2 ))− Jα1,α2

(u(n) + (i− 1)s(n+ i−1
2 ))→ 0 for n→∞.

By (4.3) it follows then that ‖s(n+ i
2 )‖ → 0 for n → ∞ and for i = 1, 2, which proves (i). Since

u(n+1) = u(n) + s(n+ 1
2 ) + s(n+1), (ii) immediately follows.

For the parallel algorithm in (3.2) we obtain by the minimality property of s(n+ i
2 ) that

Jα1,α2
(u(n) + s(n+ i

2 )) < Jα1,α2
(u(n)) (4.4)

for i = 1, 2 whenever ‖s(n+ i
2 )‖ 6= 0. Hence by convexity and the definition of u(n+1) in (3.2) we

get

2Jα1,α2(u(n)) > Jα1,α2(u(n) + s(n+ 1
2 )) + Jα1,α2(u(n) + s(n+1)) ≥ 2Jα1,α2(u(n+1)).

From (4.4), the convergence of Jα1,α2 , and the previous inequalities we obtain

Jα1,α2
(u(n))− Jα1,α2

(u(n) + s(n+ 1
2 ))︸ ︷︷ ︸

≥0

+ Jα1,α2
(u(n))− Jα1,α2

(u(n) + s(n+1))︸ ︷︷ ︸
≥0

≤ 2(Jα1,α2
(u(n))− Jα1,α2

(u(n+1)))→ 0 for n→∞.

By (4.3) we eventually have that ‖s(n+ i
2 )‖ → 0 for n→∞ and for i = 1, 2. The second statement

follows from u(n+1) =
u
(n+1)
1 +u

(n+1)
2 +u(n)

2 , since

‖u(n+1) − u(n)‖ =

∥∥∥∥∥u(n+1)
1 + u

(n+1)
2 − u(n)

2

∥∥∥∥∥ =

∥∥∥∥∥s(n+ 1
2 ) + s(n+1)

2

∥∥∥∥∥ .
Remark 4.4. From the proof of Proposition 4.3 we find that if T ∗2 T2 is invertible and α2 > 0,

then we can replace the non-increase of the energy Jα1,α2 in Proposition 3.1 (i) by a strict monotone
decrease unless u(n+1) = u(n).

4.2.1. A Convergence Estimate. For proving convergence results of the algorithms in
(3.1) and (3.2) we use a characterization of solutions of the minimization problem (2.1) similar to
[50, Proposition 4.1] in the continuous setting for α1 = 0 and adapted in [29, Proposition 5.2] to
the discrete case.

Characterization of Solutions. Following [26, Def. 4.1, p. 17] the conjugate (or Legendre
transform) of a convex function φ : V → R, with V a vector space with topological dual V ∗ and
duality pairing 〈·, ·〉, is defined by

φ∗(u∗) = sup
u∈V
{〈u, u∗〉 − φ(u)}.

The convex conjugate is useful when characterizing the solution to (4.1) with α1, α2 > 0.
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Proposition 4.5. Let ζ, u ∈ H. If the assumption (Aϕ) holds true, then ζ ∈ ∂Jα1,α2
(u) if

and only if there exists M = (M0,M1,M2) ∈ Hd×H×H, and a constant c1 ≥ 0 with |M0(x)| ≤ c1,
|M1(x)| ≤ α1 for all x ∈ Ω such that

ϕ(|(∇u)(x)|) + 〈M0(x),∇u(x)〉Rd + ϕ∗1 (|M0(x)|) = 0, for all x ∈ Ω, (4.5)

M2(x) = −2α2(T2u− g2)(x), for all x ∈ Ω, (4.6)

α1|(T1u− g1)(x)|+M1(x)((T1u)(x)− g1(x)) = 0, for all x ∈ Ω, (4.7)

T ∗1M1 + T ∗2M2 − divM0 + ζ = 0, (4.8)

where ϕ∗1 is the conjugate function of ϕ1 defined by ϕ1(t) = ϕ(|t|) for t ∈ R. If, additionally, ϕ is
differentiable and |(∇u)(x)| 6= 0 for x ∈ Ω, then we can compute M0 as

M0(x) = −ϕ
′(|(∇u)(x)|)
|(∇u)(x)|

(∇u)(x). (4.9)

The proof of this proposition is deferred to the Appendix.
For α2 = 0 the minimization problem associated with the objective in (4.1) becomes

min
u∈H

Jα1,0(u) = α1‖(T1u− g1)‖`1(Ω) + ϕ(|∇u|)(Ω), (4.10)

and the system (4.5)-(4.8) reduces to (4.11)-(4.13) below.
Corollary 4.6. Let ζ, u ∈ H. If the assumption (Aϕ) holds true, then ζ ∈ ∂Jα1,0(u) if

and only if there exists M = (M0,M1) ∈ Hd × H, and a constant c1 ≥ 0 with |M0(x)| ≤ c1,
|M1(x)| ≤ α1 for all x ∈ Ω such that

ϕ(|(∇u)(x)|) + 〈M0(x),∇u(x)〉Rd + ϕ∗1 (|M0(x)|) = 0, for all x ∈ Ω, (4.11)

α1|(T1u− g1)(x)|+M1(x)((T1u)(x)− g1(x)) = 0, for all x ∈ Ω, (4.12)

T ∗1M1 − divM0 + ζ = 0, (4.13)

where ϕ∗1 is the conjugate function of ϕ1 defined by ϕ1(t) = ϕ(|t|) for t ∈ R.
Optimality Properties. By [35, Theorem 2.1.4, p. 305], the optimality condition for the sub-

space minimization problem in Vi, cf. (3.3), i.e.,

ξ
(n+1)
i ∈ arg min

ξi∈H
{Jα1,α2(ξi) : πV ci ξi = πV ci b}, (4.14)

is

0 ∈ ∂Jα1,α2
(ξ

(n+1)
i ) + η

(n+1)
i ,

where η
(n+1)
i ∈ Range(π∗V ci

) ' V ci and b ∈ Vj as in (3.3) for i = 1, 2 and j ∈ {1, 2} \ {i}. Note that

indeed ξ
(n+1)
1 is optimal for (4.14) with i = 1 and b = ũ

(n)
2 if and only if u

(n+1)
1 = ξ

(n+1)
1 − ũ(n)

2

is optimal for the first minimization problem in (3.1) or (3.2), respectively. Moreover, ξ
(n+1)
2 is

optimal for (4.14) with i = 2 and b = u
(n+1)
1 if and only if u

(n+1)
2 = ξ

(n+1)
2 −u(n+1)

1 is a solution of

the second minimization problem in (3.1), and ξ
(n+1)
2 is optimal for (4.14) with i = 2 and b = ũ

(n)
1

if and only if u
(n+1)
2 = ξ

(n+1)
2 − ũ(n)

1 is optimal for the second minimization problem in (3.2).
The following result is a consequence of Proposition 4.5 and Corollary 4.6. It relies on the

fact that ∂Jα1,α2(ξ) is compact for any ξ ∈ H; see [6].
Corollary 4.7. Let (ξ(n))n ⊂ H be bounded and η(n) ∈ ∂Jα1,α2

(ξ(n)) for all n ∈ N. Then
(η(n))n is bounded.

Proof. Set P (ξ(n)) := α1‖T1ξ
(n) − g1‖`1(Ω) + ϕ(|∇ξ(n)|)(Ω). Then we have

η(n) ∈ 2α2T
∗
2 (T2ξ

(n) − g2) + ∂P (ξ(n)).



Subspace correction for a class of non-smooth and non-additive convex variational problems 15

Since T2 is a bounded operator and (ξ(n))n is bounded we are left with showing that the set
∂P (ξ(n)) is bounded for all n. By Corollary 4.6 we have that

∂P (ξ(n)) = { divM0 − T ∗1M1 ∈ H : ‖M0‖∞ ≤ c1, ‖M1‖∞ ≤ α1,

ϕ(|(∇ξ(n))(x)|) + 〈M0(x),∇ξ(n)(x)〉Rd + ϕ∗1 (|M0(x)|) = 0,

α1|(T1ξ
(n) − g1)(x)|+M1(x)((T1ξ

(n))(x)− g1(x)) = 0 for all x ∈ Ω}.

Since c1 and α1 do not depend on n, the sequence of sets (∂P (ξ(n)))n is uniformly bounded and,
hence, (η(n))n is bounded as well.

Proposition 4.8. There exist accumulation points u
(∞)
i and ũ

(∞)
i of the sequences (u

(n)
i )n

and (ũ
(n)
i )n, i = 1, 2, generated by the algorithms in (3.1) or (3.2) such that

(i) u
(∞)
1 and ũ

(∞)
1 are minimizers of minu1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ) and

(ii) for the algorithm in (3.1) u
(∞)
2 and ũ

(∞)
2 are minimizers of minu2∈V2

Jα1,α2
(u

(∞)
1 +u2) and

for the algorithm in (3.2) u
(∞)
2 and ũ

(∞)
2 are minimizers of minu2∈V2

Jα1,α2
(ũ

(∞)
1 + u2).

Proof. We start by showing the assertion for algorithm (3.1). By Proposition 3.3 the sequence

(ũ
(n)
2 )n is bounded and hence has a convergent subsequence (ũ

(nk)
2 )k with limit ũ

(∞)
2 . Further,

(u
(nk+1)
1 )k is bounded and has a subsequence (u

(nk`+1)

1 )` which converges to u
(∞)
1 . The minimality

property of u
(nk`+1)

1 yields that 0 ∈ ∂V1Jα1,α2(·+ ũ
(nk` )

2 )(u
(nk`+1)

1 ). By [44, Theorem 24.4, p 233]

we obtain that 0 ∈ ∂V1
Jα1,α2

(· + ũ
(∞)
2 )(u

(∞)
1 ) and hence u

(∞)
1 ∈ arg minu1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ).

Since (u
(nk`+1)

2 )` is again bounded, there exists a convergent subsequence (u
(nk`j

+1)

2 )j with limit

u
(∞)
2 and we get that 0 ∈ ∂V2

Jα1,α2
(u

(∞)
1 + ·)(u(∞)

2 ), i.e., u
(∞)
2 = arg minu2∈V2

Jα1,α2
(u

(∞)
1 + u2).

Moreover, by the monotone decrease of the energy (see Proposition 3.1) we have that

Jα1,α2
(u(n)) ≥ Jα1,α2

(u
(n+1)
1 + ũ

(n)
2 ) ≥ Jα1,α2

(u(n+1)) for all n ∈ N (4.15)

and hence

Jα1,α2
(u(n))− Jα1,α2

(u(n+1)) ≥ Jα1,α2
(u

(n+1)
1 + ũ

(n)
2 )− Jα1,α2

(ũ
(n+1)
1 + ũ

(n+1)
2 ) ≥ 0.

as well as

Jα1,α2
(u(n))− Jα1,α2

(u(n+1)) ≥ Jα1,α2
(u

(n+1)
1 + ũ

(n)
2 )− Jα1,α2

(u
(n+1)
1 + u

(n+1)
2 ) ≥ 0.

Since Jα1,α2
is bounded from below, we obtain limn→∞

[
Jα1,α2

(u(n))− Jα1,α2
(u(n+l))

]
= 0 for any

l ∈ N. Consequently

0 = lim
nk`→∞

[
Jα1,α2(u

(nk`+1)

1 + ũ
(nk` )

2 )− Jα1,α2(ũ
(nk`+1

)

1 + ũ
(nk`+1

)

2 )
]

(4.16)

0 = lim
nk`j

→∞

[
Jα1,α2

(u
(nk`j

+1)

1 + ũ
(nk`j

)

2 )− Jα1,α2
(u

(nk`j
+1)

1 + u
(nk`j

+1)

2 )

]
= Jα1,α2

(u
(∞)
1 + ũ

(∞)
2 )− Jα1,α2

(u
(∞)
1 + u

(∞)
2 )

(4.17)

From equation (4.17) we observe that since u
(∞)
2 ∈ arg minu2∈V2 Jα1,α2(u

(∞)
1 + u2), also ũ

(∞)
2 ∈

arg minu2∈V2 Jα1,α2(u
(∞)
1 + u2).

Since (ũ
(nk`+1

)

1 )` is bounded, there exists a convergent subsequence (ũ
(nk`m+1

)

1 )m with limit

ũ
(∞)
1 and we obtain from (4.16)

0 = lim
nk`m

→∞

[
Jα1,α2

(u
(nk`m

+1)

1 + ũ
(nk`m

)

2 )− Jα1,α2
(ũ

(nk`m+1
)

1 + ũ
(nk`m+1

)

2 )

]
= Jα1,α2

(u
(∞)
1 + ũ

(∞)
2 )− Jα1,α2

(ũ
(∞)
1 + ũ

(∞)
2 ).

(4.18)
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From (4.18) we infer that since u
(∞)
1 is a solution of minu1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ), ũ

(∞)
1 is a solution

as well.
Although the proof for the algorithm in (3.2) is similar, for the sake of completeness we provide

the details here. By similar arguments as above one shows that there exist accumulation points

u
(∞)
1 ∈ arg minu1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ) and u

(∞)
2 = arg minu2∈V2

Jα1,α2
(ũ

(∞)
1 +u2). Hence, we have

Jα1,α2(u
(∞)
1 + ũ

(∞)
2 ) ≤ Jα1,α2(u1 + ũ

(∞)
2 ) ∀ u1 ∈ V1,

Jα1,α2(ũ
(∞)
1 + u

(∞)
2 ) ≤ Jα1,α2(ũ

(∞)
1 + u2) ∀ u2 ∈ V2.

(4.19)

Moreover, by the monotone decrease of the energy Jα1,α2 (see Proposition 3.1) we have

Jα1,α2(u(n)) ≥ 1

2

(
Jα1,α2(u

(n+1)
1 + ũ

(n)
2 ) + Jα1,α2(ũ

(n)
1 + u

(n+1)
2 )

)
≥ Jα1,α2(u(n+1))

and hence

2(Jα1,α2(u(n))−Jα1,α2(u(n+1))) ≥ Jα1,α2(u
(n+1)
1 +ũ

(n)
2 )+Jα1,α2(ũ

(n)
1 +u

(n+1)
2 )−2Jα1,α2(u(n+1)) ≥ 0.

Since Jα1,α2
is bounded below, we obtain limn→∞

[
Jα1,α2

(u(n))− Jα1,α2
(u(n+l))

]
= 0 for any l ∈ N

and hence

lim
n→∞

[
Jα1,α2(u

(nk`jm
+1)

1 + ũ
(nk`jm

)

2 ) + Jα1,α2(ũ
(nk`jm

)

1 + u
(nk`jm

+1)

2 )

−2Jα1,α2(ũ
(nk`jm+1

)

1 + ũ
(nk`jm+1

)

2 )
]

= 0.

From (4.19) it follows that

Jα1,α2(u
(∞)
1 +ũ

(∞)
2 )−Jα1,α2(ũ

(∞)
1 +ũ

(∞)
2 ) = 0 and Jα1,α2(ũ

(∞)
1 +u

(∞)
2 )−Jα1,α2(ũ

(∞)
1 +ũ

(∞)
2 ) = 0

and hence

ũ
(∞)
1 ∈ arg min

u1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ) and ũ

(∞)
2 ∈ arg min

u2∈V2

Jα1,α2
(ũ

(∞)
1 + u2),

which concludes the proof.

Remark 4.9.
(i) If V1 and V2 are disjoint spaces, then the algorithm in (3.1) generates sequences (u

(n)
i )n

and (ũ
(n)
i )n with u

(n)
i = ũ

(n)
i , and the algorithm in (3.2) generates sequences (u

(n)
i )n and

(ũ
(n)
i )n with ũ

(n+1)
i = 1

2 (u
(n+1)
i + u

(n)
i ), ũ

(∞)
i = u

(∞)
i , and u(∞) = u

(∞)
1 + u

(∞)
2 .

(ii) In general, however, the algorithms in (3.1) and (3.2), respectively, may generate se-

quences (u
(n)
i )n and (ũ

(n)
i )n with u

(n)
i 6= ũ

(n)
i , i = 1, 2. This relation is still valid in the

limit case, i.e., for n→∞ we have u
(∞)
i 6= ũ

(∞)
i (unless V1 and V2 are disjoint), although

u
(∞)
i and ũ

(∞)
i are minimizers of the same minimization problem; see Proposition 3.3.

This behavior can be attributed to the fact that Jα1,α2
is not strictly convex and, thus, has

in general more than one minimizer.
Next we provide an estimate for the distance between an accumulation point generated by

one of the algorithms (3.1) and (3.2), respectively, and a minimizer of Jα1,α2 .
Theorem 4.10. Assume that u∗ is a minimizer of Jα1,α2

, let u(∞) be an accumulation point
of the sequence (u(n))n generated by the algorithm in (3.1) or (3.2). Then we have that

1. u(∞) is a minimizer of Jα1,α2
, or

2. there exists a constant β > 0 such that ‖u(∞) − u∗‖`2(Ω) ≤ β or

3. if α2 > 0 and T ∗2 T2 is positive definite in the direction u(∞)−u∗ with smallest Eigenvalue
σ > 0, i.e., ‖T2(u(∞) − u∗)‖2`2(Ω) ≥ σ‖u

(∞) − u∗‖2`2(Ω), then

‖u(∞) − u∗‖`2(Ω) ≤
‖η̂‖`2(Ω)

α2σ
, (4.20)

where η̂ ∈ arg minη∈
⋃2
i=1(∂Jα1,α2

(u(∞))∩V ci ) ‖η‖`2(Ω).
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Proof. Let ξ
(n)
i ∈ arg minξi∈H{Jα1,α2(ξi) : πV ci ξi = πV ci b} with b ∈ Vj as in (3.3) for i = 1, 2

and j ∈ {1, 2}\{i}. Then, by [35, Theorem 2.1.4, p. 305] we have that 0 ∈ ∂Jα1,α2(ξ
(n)
i )+η

(n)
i for

ηi ∈ V ci and i = 1, 2. In other words, for example, for i = 1 we have that ξ
(n)
1 − ũ(n−1)

2 =: u
(n)
1 ∈

arg minu1∈V1
Jα1,α2

(u1 + ũ
(n−1)
2 ). Since (ξ

(n)
i )n is bounded, (∂Jα1,α2

(ξ
(n)
i ))n is bounded as well,

and, cf. [44, Theorem 24.4, p 233], there exists η
(∞)
i ∈ V ci such that 0 ∈ ∂Jα1,α2

(ξ
(∞)
i ) + η

(∞)
i ,

where ξ
(∞)
i is an accumulation point of (ξ

(n)
i )n. Hence, u

(∞)
i is optimal in Vi for i = 1, 2. From

Proposition 4.8 we get that if u
(∞)
i is optimal then also ũ

(∞)
i is optimal. Hence for i = 1 we have

ũ(∞) − ũ(∞)
2 := ũ

(∞)
1 ∈ arg minu1∈V1

Jα1,α2
(u1 + ũ

(∞)
2 ), which means that there exists η̂1 ∈ V c1

such that 0 ∈ ∂Jα1,α2(ũ(∞)) + η̂1. Similarly we get for i = 2 that there exists η̂2 ∈ V c2 such that
0 ∈ ∂Jα1,α2(u(∞)) + η̂2. Note, that for the sequential algorithm in (3.1) we have ũ(∞) 6= u(∞) in
general while for the parallel algorithm in (3.2) we have ũ(∞) = u(∞). In the rest of the proof we
denote by u(∞) an accumulation point which fulfills at least one of the before mentioned inclusions.

By the definition of the subdifferential we obtain

Jα1,α2
(u(∞)) ≤ Jα1,α2

(v) + 〈η̂, u(∞) − v〉H ≤ Jα1,α2
(v) + ‖η̂‖`2(Ω)‖v − u(∞)‖`2(Ω) (4.21)

for all v ∈ H, where η̂ = arg minη∈
⋃2
i=1(∂Jα1,α2 (u(∞))∩V ci ) ‖η‖`2(Ω).

Let u∗ ∈ arg minu∈H Jα1,α2
(u). Then the optimality of u∗ yields that the directional derivative

of Jα1,α2
at u∗ in any direction s ∈ H is non-negative, i.e., J ′α1,α2

(u∗; s) ≥ 0. Set P (ξ) :=
α1‖T1ξ − g1‖`1(Ω) + ϕ(|∇ξ|)(Ω). Then, by using Taylor’s expansion, for s ∈ H we have that

Jα1,α2(u∗ + s) = α2‖T2u
∗ − g2‖2`2(Ω) + 〈s, 2α2T

∗
2 (T2u

∗ − g2)〉H + α2‖T2s‖2`2(Ω) + P (u∗ + s)

= Jα1,α2(u∗) + 〈s, 2α2T
∗
2 (T2u

∗ − g2)〉H + P (u∗ + s)− P (u∗) + α2‖T2s‖2`2(Ω).

By using P (u∗ + s)− P (u∗) ≥ P ′(u∗; s), which easily follows from the convexity of P , we obtain
that

Jα1,α2(u∗ + s) ≥ Jα1,α2(u∗) + 〈s, 2α2T
∗
2 (T2u

∗ − g2)〉H + P ′(u∗; s) + α2‖T2s‖2`2(Ω). (4.22)

Since J ′α1,α2
(u∗; s) = 〈s, 2α2T

∗
2 (T2u

∗ − g2)〉H + P ′(u∗; s) ≥ 0 and α2‖T2s‖2`2(Ω) ≥ 0 there exists a

constant ρ ≥ 0 such that Jα1,α2
(u∗ + s) = Jα1,α2

(u∗) + ρ.
1. If ρ = 0 for s := u(∞)− u∗, then it immediately follows that u∗+ s = u(∞) is a minimizer

of Jα1,α2
.

2. If ρ > 0 for s := u(∞)− u∗, then from the coercivity condition we obtain that there exists
a constant β > 0 such that 0 < ‖u(∞) − u∗‖`2(Ω) ≤ β < +∞.

3. If additionally α2 > 0, and there exists a constant σ > 0 such that ‖T2(u(∞)−u∗)‖2`2(Ω) ≥
σ‖u(∞) − u∗‖2`2(Ω), then we get from (4.22) that

Jα1,α2
(u∗ + s) ≥ Jα1,α2

(u∗) + α2σ‖u(∞) − u∗‖2`2(Ω). (4.23)

Setting v = u∗ in (4.21) and using the inequality in (4.23) yield

Jα1,α2
(u∗) + α2σ‖u(∞) − u∗‖2`2(Ω) ≤ Jα1,α2

(u(∞)) ≤ Jα1,α2
(u∗) + ‖η̂‖`2(Ω)‖u∗ − u(∞)‖`2(Ω)

and consequently

‖u(∞) − u∗‖`2(Ω) ≤
‖η̂‖`2(Ω)

α2σ
.

We have the following immediate consequence of Theorem 4.10.

Corollary 4.11. Let the assumptions of Theorem 4.10 hold true. If ‖η(n`)
i ‖ → 0 for `→∞

along a suitable subsequence (n`)` for at least one i ∈ {1, 2}, then any accumulation point of the
sequence (u(n))n generated by the algorithm in (3.1) or (3.2) is a minimizer of Jα1,α2

.
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4.2.2. A Modified Sequential Subspace Correction Method. Note that the algorithm
in (3.1) is a special case of a coordinate descent method, where the spaces Vi are chosen in a cyclic
manner; see [48, 49] for more details on different rules for choosing the subspaces. In the sense of
coordinate descent methods our algorithm in (3.1) can be written as follows.

CD-Algorithm: Choose u(0) ∈ H and iterate for n = 0, 1, 2, . . .
1) choose a non-empty space Vn ⊂ H;
2) compute s(n) = sT∗2 T2

(u(n), Vn) ∈ arg mins{Jα1,α2
(u(n) + s) s.t. πV cn s = 0};

3) set u(n+1) = u(n) + s(n).

In step 2, the subscript T ∗2 T2 refers to the Hessian of the smooth part of Jα1,α2 . Compared
to [49] here we choose the step size in the update of u(n+1) to be 1, which is justified by (4.3) for
α2 > 0. As already mentioned, there exist several different ways of choosing Vn in each iteration.
We suggest to select Vn such that

‖sD(u(n), Vn)‖`2(Ω) ≥ ν‖sD(u(n),H)‖`2(Ω), (4.24)

where 0 < ν ≤ 1 and D : H → H is positive definite and diagonal, i.e., there exists a D̃ ∈ H
associated with D such that Du = D̃ ◦ u (Hadamard product) with [D̃ ◦ u](x) = D̃(x)u(x) for
any u ∈ H and x ∈ Ω. Here, the subscript D indicates that T ∗2 T2, the Hessian of the smooth
part of Jα1,α2

, is replaced by D. This rule is called the Gauss-Southwell-r rule, which also allows
the choice Vn = H. With this selection rule of the subspaces we are able to establish global
convergence. The proof follows from Theorem 1 of [49].

Theorem 4.12. Assume 2α2‖T2‖2 ≥ λ > 0. Let (u(n))n, (s(n))n be sequences generated
by the CD-Algorithm. If (Vn) is chosen by the Gauss-Southwell-r rule with D positive definite,
diagonal, and bounded, i.e., there exists a δ̄ > 0 such that ‖Du‖ ≤ δ̄‖u‖ for all u ∈ H, then every
cluster point of (u(n))n is a minimizer of Jα1,α2

.

5. Application: Domain Decomposition. The results of the previous sections are valid
for any splitting of the function space H. We concentrate now on decompositions which split the
spatial domain into two subdomains. But let us emphasize that a generalization to a splitting into
more domains is straightforward.

5.1. Overlapping Domain Decomposition. In this section we focus on an overlapping
domain decomposition method. Thus we want to minimize (4.1) by decomposing Ω into two
overlapping subdomains Ω1 and Ω2 such that Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 6= ∅. By Γ1 we denote the
interface between Ω1 and Ω2 \Ω1 and by Γ2 the interface between Ω2 and Ω1 \Ω2. For consistency
with the definitions of the gradient and divergence operators, we assume that the subdomains Ωi as
well as Ω are discrete d-orthotopes. We stress that this is by no means a restriction, but simplifies
the presentation. Associated to the splitting of Ω we define Vi = {u ∈ H : supp(u) ⊂ Ωi}.
One aims now to minimize Jα1,α2 by the alternating algorithm in (3.1) or the parallel algorithm
in (3.2). Note that the respective subspace minimization problems are constrained optimization
problems of the type (3.3). In particular, for the alternating algorithm we have in V1

min
v∈H

Jα1,α2
(v) s.t. πV c1 v = πV c1 ũ

(n)
2 , (5.1)

and in V2 we have

min
v∈H

Jα1,α2
(v) s.t. πV c2 v = πV c2 u

(n+1)
1 ,

while for the parallel algorithm the minimization in V1 is again (5.1) and in V2 it changes to

min
v∈H

Jα1,α2
(v) s.t. πV c2 v = πV c2 ũ

(n)
1 .
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5.2. Non-Overlapping Domain Decomposition. In the non-overlapping domain decom-
position method we want to minimize (4.1) by decomposing Ω into two non-overlapping subdo-
mains Ω1 and Ω2 such that Ω = Ω1 ∪Ω2 and Ω1 = Ω \Ω2. For consistency with the definitions of
the gradient and divergence operators, we again assume that the subdomains Ωi as well as Ω are
discrete d-orthotopes. Associated to the splitting of Ω we define by Vi = {u ∈ H : supp(u) ⊂ Ωi}
the function space of the subdomain Ωi. Then we minimize Jα1,α2

either by the parallel algorithm
in (3.2) or by the alternating algorithm in (3.1), which specifies to:

Choose an initial u(0) =: u
(0)
1 + u

(0)
2 ∈ V1 ⊕ V2, for example, u(0) = 0, and iterate

u
(n+1)
1 ← arg minu1∈V1

Jα1,α2
(u1 + u

(n)
2 ),

u
(n+1)
2 ← arg minu2∈V2

Jα1,α2
(u

(n+1)
1 + u2),

u(n+1) ← u
(n+1)
1 + u

(n+1)
2 .

(5.2)

The subspace optimization problems for the alternating version are

min
u1∈V1

Jα1,α2
(u1 + u

(n)
2 ) = min

u1∈V1

α1‖T1u1 − (g1 − T1u
(n)
2 )‖`1(Ω) + α2‖T2u1 − (g2 − T2u

(n)
2 )‖2`2(Ω)

+ ϕ(|∇(u1 + u
(n)
2 )|)(Ω)

in V1 and

min
u2∈V2

Jα1,α2(u
(n+1)
1 + u2) = min

u2∈V2

α1‖T1u2 − (g1 − T1u
(n+1)
1 )‖`1(Ω)

+ α2‖T2u2 − (g2 − T2u
(n+1)
1 )‖2`2(Ω) + ϕ(|∇(u

(n+1)
1 + u2)|)(Ω)

in V2. Upon adjusting notation, for the parallel algorithm the subspace minimization problems
look similar.

A very special situation occurs when (T1u2)(x) = 0 for all x ∈ Ω and (T2u1)(x) = 0 for all
x ∈ Ω, which is the case when Ti = 1Ωi T̃i with T̃i : H → H such that for all vj ∈ Vj we have

T̃ivj ∈ Vj for j = 1, 2 and i = 1, 2 (e.g., T̃i = I or T̃i = 1Ω\K with K ⊂ Ω). Then the above
subspace minimization problems simplify to

min
u1∈V1

Jα1,α2(u1 + u
(n)
2 ) = min

u1∈V1

α1‖T1u1 − g1‖`1(Ω) + ϕ(|∇(u1 + u
(n)
2 )|)(Ω) (5.3)

in V1 and

min
u2∈V2

Jα1,α2(u
(n+1)
1 + u2) = min

u2∈V2

α2‖T2u2 − g2‖2`2(Ω) + ϕ(|∇(u
(n+1)
1 + u2)|)(Ω) (5.4)

in V2.

5.3. Numerical Implementation. In this section we propose an implementation of the
domain decomposition algorithms in (3.1) and (3.2) when the domain is split into overlapping and
non-overlapping subdomains for the particular case ϕ(|∇u|)(Ω) = |∇u|(Ω) (total variation of u in
Ω), i.e., for the minimization problem

arg min
u∈H

α1‖T1u− g1‖`1(Ω) + α2‖T2u− g2‖2`2(Ω) + |∇u|(Ω). (5.5)

As our implementation works for both the non-overlapping and overlapping domain decomposition
algorithm, we use the notation for the overlapping splitting only. More precisely, in the non-
overlapping case Ωi \ Ωǐ turns out to be all of Ωi for i = 1, 2 and ǐ ∈ {1, 2} \ {i}, and for a
non-overlapping decomposition we have that Γ1 = Γ2 is the interface between Ω1 and Ω2.

5.3.1. Implementation of the Domain Decomposition Algorithms. If we compute
the minimizer of the functional (4.1) either via the sequential or parallel non-overlapping do-
main decomposition algorithm or via the sequential or parallel overlapping domain decomposition
algorithm, then, on each subdomain, we have to solve a problem of the type

min
ξ∈H

Jα1,α2
(ξ) s.t. Aξ = b (5.6)
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where A : H → H is a linear operator or more precisely an orthogonal projection, i.e., A = πV ci
for i = 1, 2. There exist several numerical methods, which efficiently solve (5.6). Instances are the
Augmented Lagrangian Method [5, 36] or its variations known as Bregman iterations [43, 55, 56],
because of their relation to the Bregman distance [8].

Note that the functional Jα1,α2 is defined on all of Ω. We describe now how one may reduce
the dimensionality of the subproblems and solve the resulting problems.

Subspace Minimization. We consider the minimization problem in Ω1 written as

min
u1∈V1

Jα1,α2
(u1+u2) = α1‖T1(u1+u2)−g1‖`1(Ω)+α2‖T2(u1+u2)−g2‖2`2(Ω)+|∇(u1+u2)|(Ω), (5.7)

where u2 ∈ V2 is fixed. In order to compute a minimizer of (5.7) we use the discrete analogue of
the algorithm described in Section 2.2 in V1: (i) We introduce a new variable v = T1(u1 +u2)−g1,
(ii) we regularize the functional in (5.7) as in (2.2), (iii) analogously to (2.3) we solve

min
v∈H

α1‖v‖`1(Ω) +
1

2γ
‖T1u− g1 − v‖2`2(Ω), (5.8)

and (iv) instead of (2.5) we minimize

min
u1∈V1

1

2γ
‖T1u1 − (g1 − T1u2)− v‖2`2(Ω) + α2‖T2u1 − (g2 − T2u2)‖2`2(Ω) + |∇(u1 + u2)|(Ω). (5.9)

Similarly to (2.7), an approximate solution to (5.9) may be computed by the following iterative

algorithm: Initialize u
(0)
1 ∈ V1 and iterate

u
(`+1)
1 ∈ arg min

u1∈V1

S(u1 + u2, u
(`)
1 + u2) for ` ≥ 0. (5.10)

Thanks to the splitting property of the total variation, i.e.,

|∇(u1 + u2)|(Ω) = |∇(u1 + u2)|(Ω1 ∪ Ω̃2) + f(u2), (5.11)

where f is a function independent of u1 (see [2]), we can restrict (5.10) to Ω1 ∪ Ω̃2, where Ω̃2 ⊂
Ω2 \ Ω1 is a small neighborhood strip around the interface Γ1. Hence the minimization problem
in (5.10) is equivalent to

min
u1∈V1

∥∥∥∥u1 + u2 −
γ

1 + 2α2γ

(
1

γ
z1 + 2α2z2

)∥∥∥∥2

`2(Ω1∪Ω̃2)

+
2γ

1 + 2α2γ
|∇(u1 + u2)|(Ω1 ∪ Ω̃2)

with z1 = u
(`)
1 + u2 + T ∗1 (g1 + v− T1u

(`)
1 − T1u2) and z2 = u

(`)
1 + u2 + T ∗2 (g2 − T2u

(`)
1 − T2u2). We

compute a solution of this problem by solving the following constrained minimization problem

min
ξ1∈V1⊕Ṽ2

∥∥∥∥ξ1 − γ

1 + 2α2γ

(
1

γ
z1 + 2α2z2

)∥∥∥∥2

`2(Ω1∪Ω̃2)

+
2γ

1 + 2α2γ
|∇ξ1|(Ω1 ∪ Ω̃2),

s.t. πṼ2
ξ1 = πṼ2

u2,

(5.12)

where Ṽ2 := {v ∈ H : supp(v) ⊂ Ω̃2}. Note that ξ1 is optimal if and only if u1 = ξ1 − πṼ2
u2 ∈ V1

is optimal. We compute a minimizer of the problem in (5.12), which is of the form (5.6), by the
Bregmanized Operator Splitting - Split Bregman Algorithm [38].

Remark 5.1. The minimization problem (2.3) and (5.8) can be solved very efficiently on the
whole domain Ω, since we only have to perform a soft-thresholding. On the other hand we could
restrict the constrained L2-TV minimization (5.12) to the domain Ω1∪Ω̃2, i.e., on Ω1 plus a small
stripe around the interface. This is possible since we freed u1 from the operators T1 and T2 and
because of the splitting property of the total variation (5.11).

Remark 5.2 (L1-TV Minimization). In the case when α2 = 0 and α1 > 0, i.e., the mini-
mization problem in (5.5) becomes the L1-TV model, each subspace minimization problem can be
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computed in the same way as described above. In fact, we first minimize (5.8) and then we solve
the constrained minimization problem (5.12), which simplifies to

min
ξ1∈V1⊕Ṽ2

‖ξ1 − z1‖2`2(Ω1∪Ω̃2) + 2γ|∇ξ1|(Ω1 ∪ Ω̃2) s.t. πṼ2
ξ1 = πṼ2

u2.

Remark 5.3 (Denoising). If T1 = T2 = I, then we do not need surrogate functionals and
hence we do not have to perform the iterative algorithm (5.10). Instead we restrict (5.9) directly
to Ω1 ∪ Ω̃2 and solve the following constrained minimization problem

min
ξ1∈V1⊕Ṽ2

∥∥∥∥ξ1 − γ

1 + 2α2γ

(
1

γ
(g1 + v) + 2α2g2

)∥∥∥∥2

`2(Ω1∪Ω̃2)

+
2γ

1 + 2α2γ
|∇ξ1|(Ω1 ∪ Ω̃2)

s.t. πṼ2
ξ1 = πṼ2

u2.

(5.13)

The minimization problem in Ω2 can be solved in the same way by adjusting the notations
accordingly.

5.3.2. A Special Case. The implementation of the special case Ti = 1Ωi T̃i and gi = 1Ωi g̃i,
where T̃i : H → H and g̃i ∈ H, for i = 1, 2, is considered next. Note that the case considered here
is more general than the situation discussed in Section 5.2 on page 19. The minimization problem
in (5.5) can be written as

min
u∈H

α1‖T̃1u− g̃1‖`1(Ω1) + α2‖T̃2u− g̃2‖2`2(Ω2) + |∇u|(Ω).

When we solve this problem via one of the suggested domain decomposition methods, then on
each subdomain we have to compute the minimizer of a constrained optimization problem. For
example, in Ω1 we have

min
u1∈V1

α1‖T̃1(u1 + u2)− g̃1‖`1(Ω1) + α2‖T̃2(u1 + u2)− g̃2‖2`2(Ω2) + |∇(u1 + u2)|(Ω). (5.14)

A solution of this problem can be obtained as described above in Section 5.3.1. However, there
exists a more efficient way of solving the problem in Ω1. This strategy, however, is not applicable
for the minimization in Ω2 due to the special structure of the minimization problems with the
`1-norm defined only on Ω1. The main idea of this more efficient approach is the following one:

1. Free u1 from the influence of T̃2 (respectively T2) by introducing a surrogate functional
in a similar way as before, i.e., for a ∈ V1 define

S(u1 + u2, a) := α1‖T̃1(u1 + u2)− g̃1‖`1(Ω1) + α2‖T2(u1 + u2)− g2‖2`2(Ω) + |∇(u1 + u2)|(Ω)

+ α2

(
‖u1 − a‖2`2(Ω) − ‖T2(u1 − a)‖2`2(Ω)

)
= α1‖T̃1(u1 + u2)− g̃1‖`1(Ω1) + α2‖u1 − z2‖2`2(Ω) + |∇(u1 + u2)|(Ω) + ψ,

where z2 = a+T ∗2 (g2−T2u2−T2a) and ψ is a function independent of u1. Then compute

an approximate solution of (5.14) by the following algorithm: Initialize u
(0)
1 ∈ V1 and

iterate

u
(`+1)
1 = arg min

u1∈V1

S(u1 + u2, u
(`)
1 ) for ` ≥ 0; (5.15)

2. Thanks to (5.11), we can restrict the surrogate functional iteration to Ω1 ∪ Ω̃2.
3. In each surrogate iteration (5.15) one has to solve a constrained minimization problem.

Exemplarily we describe here the Bregmanized Operator Splitting of [56]. For this pur-

pose, let µ, δ > 0 and initialize ξ
(0)
1 ∈ V1 ⊕ Ṽ2 and b(0) = b = u2. Then for k = 0, 1, . . .

solve

ξ
(k+1)
1 = arg min

ξ1∈V1⊕Ṽ2

S(ξ1, u
(`)
1 ) +

µ

δ
‖ξ1 − (ξ

(k)
1 − δπ∗

Ṽ2
(πṼ2

ξ
(k)
1 − b(k)))‖2

`2(Ω1∪Ω̃2)

b(k+1) = b(k) − πṼ2
ξ

(k+1)
1 + b.

(5.16)
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4. Solve the minimization problem in (5.16) by the algorithm introduced in Section 2.2.
Remark 5.4. Practically it seems that recomputing the Bregman update outside of the algo-

rithm of Section 2.2 is preferable (than computing the update inside the algorithm of Section 2.2,
as it is done in Section 5.3.1), as the resulting overall algorithm seems to converge faster according
to our numerical practice.

Remark 5.5. In the case when T̃1 = T̃2 = I and Ω1 ∩ Ω2 = ∅, then on each domain we have
to solve the following constrained minimization problems

min
u1∈V1⊕Ṽ2

α1‖u1 − g̃1‖`1(Ω1∪Ω̃2) + |∇(u1 + u2)|(Ω1 ∪ Ω̃2) s.t. πṼ2
u1 = 0 (5.17)

and

min
u2∈V2⊕Ṽ1

α2‖u2 − g̃2‖2`2(Ω2∪Ω̃1)
+ |∇(u1 + u2)|(Ω2 ∪ Ω̃1) s.t. πṼ1

u2 = 0, (5.18)

where u1 ∈ V1 is fixed in (5.18) and Ω̃1 is defined analogously to Ω̃2. The subspace minimization
problem (5.18) can be solved, for example, by the Bregmanized Operator Splitting - Split Bregman
algorithm [38], while one may solve (5.17) as suggested in this section above starting at point 3.

Due to the structure of the problem, for the minimization in Ω2 this approach is not applicable
and hence we suggest to use the strategy of Section 5.3.1.

5.4. Numerical Experiments. In the following we present numerical experiments for the
proposed sequential and parallel algorithms. In particular, we show applications in image denois-
ing, inpainting, and deblurring. The values of the parameters α1 and α2 in the objective functional
(5.5) are chosen according to the application and experimentally, i.e., we choose the values which
give a good compromise between visual quality and computational time of the algorithm. We
emphasize that the optimal selection of α1 and α2 is an interesting research topic in its own right,
but goes beyond the scope of the present paper. However, it has been shown in several examples,
see [9, 41, 42], that if only salt-and-pepper noise is present in an image then the L1-TV model
outperforms the L2-TV model. Hence we use the pure L1-TV model when only salt-and-pepper
noise corrupted the image of interest, whereas we use the pure L2-TV model when only Gaussian
noise is present.

5.4.1. Numerical Results – Sequential Algorithms. In our numerical experiments we
terminate our sequential algorithms (3.1) and (5.2) as soon as the norm of the difference of two
successive iterates drops below a certain threshold. More precisely, we use as a stopping criterion
‖u(n)−u(n+1)‖ < 10−6, which seems suitable for our purposes. In fact, if our algorithm converges
at least linearly, i.e., there exists an ε ∈ (0, 1) and an m > 0 such that for all n ≥ m we have
‖u(n+1)−u(∞)‖ ≤ ε‖u(n)−u(∞)‖, the above stopping criterion ensures that the distance between

our obtained result u and u(∞) is ‖u − u(∞)‖ ≤ 10−6ε
1−ε . Moreover, if we set α2 > 0, then we

depict the minimal norm of Lagrange multipliers η(n) := mini{‖η(n)
i ‖`2(Ω)}, which - according to

Corollary 4.11 (see also Theorem 4.10) - indicates how close the computed solution is to the real
global solution. In fact, when the minimal norm of Lagrange multipliers tends to zero numerically,
then the associated domain decomposition algorithm converges (along a subsequence) indeed to
the global solution; see Figure 5.1(c)-(d), Figure 5.3(c)-(d), and Figure 5.5(c).

We apply the overlapping and non-overlapping domain decomposition algorithm in (3.1) to
the image shown in Figure 5.1(a) by decomposing the image domain into two overlapping or non-
overlapping subdomains respectively. This image of size 167 × 270 pixels has partly lost data
(black heart) while it is also corrupted by 10% of salt-and-pepper noise (i.e., 10% of the pixels are
either flipped to black or white) and by Gaussian white noise with zero mean and variance 0.03.
In this example the operators T1 and T2 act as Tiu = 1Ω\Ku for i = 1, 2, where Ω denotes the
image domain and K ⊂ Ω the set in which the original image content got lost. The parameters
α1 and α2 are chosen to be 0.4, while γ = 0.01, µ = 1, and δ = 0.99. In Figure 5.1(b) we depict
the result computed by the overlapping domain decomposition algorithm. Since α2 is chosen to
be positive, the progress of the minimal norm of Lagrange multipliers allows to check whether the
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iterates converge to the minimizer of the global functional. In fact, we see in Figure 5.1(c) and (d)
that the minimal norm of Lagrange multipliers converge to 0 and hence the accumulation points
of the sequence of iterates converge to the global minimizer.

(a) (b)

(c) (d)

(e) (f)

Fig. 5.1. Domain decomposition for L1-L2-TV minimization. Parameters: α1 = α2 = 0.4, γ = 0.01,
µ = 1, δ = 0.99, and ROF-problem solved via Split Bregman with tolerance 10−3. In (a) we show an
image of size 167 × 270 pixels with a missing part (black heart) and corrupted by 10% salt-and-pepper
noise and Gaussian noise with zero mean and variance 0.03. The restored image is shown in (b). In (c)

we depict the progress of the minimal norm of Lagrange multipliers η(n) obtained by overlapping domain
decomposition, as depicted in (e), while in (d) we plot the one obtained by the non-overlapping domain
decomposition, see (f).

In the next example we present the successful application of a domain decomposition for the
problem of pure L1-TV minimization. Figure 5.2(a) shows the previously used image rescaled to
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size 334 × 540 pixels which is now corrupted by a Gaussian blur with a kernel size of 15 × 15
pixels and standard deviation 2 and in addition 2% salt-and-pepper noise. In order to restore
the image we decompose the image domain into two non-overlapping subdomains and solve the
resulting problems on the respective subdomains alternatingly by the non-overlapping domain
decomposition algorithm (5.2). Since there is no Gaussian noise present, this is a typical example
for L1-TV minimization, i.e., we set α2 = 0 in (5.5). We choose α1 = 5

3 , γ = 0.01, µ = 1, and
δ = 0.99 and obtain the image in Figure 5.2(b).

(a) (b)

Fig. 5.2. Non-overlapping domain decomposition algorithm for L1-TV minimization. Parameters:
α1 = 5/3, γ = 0.01, µ = 1, δ = 0.99, and ROF-problem solved via Split Bregman with tolerance 10−4. In
(a) we show an image of size 334×540 pixels which is corrupted by a Gaussian blur (size 15×15; standard
deviation 2) and 2% salt-and-pepper noise. In this simulation the problem is split into two subproblems.
The restored image is shown in (b).

Further we illustrate the successful application of the non-overlapping domain decomposition
algorithm (5.2) when both salt-and-pepper noise and Gaussian noise are present. In particular,
we apply our algorithm to an image with a missing part which is corrupted by salt-and-pepper
noise in the upper half while in the lower half only Gaussian noise is present. We are aware that
this is a rather artificial example but very interesting from a numerical point of view. Note that
since the total variation is non-local and hence non-additive it is not possible to obtain a correct
global solution by just cutting the image into an upper and a lower part, and then computing the
solutions separately and putting them together. However, since we are in the setting of the special
situation of Section 5.2, by using our non-overlapping domain decomposition algorithm in (5.2) we
are able to split the image into domains in which only one type of noise is present. Then we only
have to solve on each domain either a constrained L1-TV minimization problem, cf. (5.3), or a
constrained L2-TV minimization problem, cf. (5.4). These problems are in general easier to solve
than the original L1-L2-TV problem. Figure 5.3(a) is such an image (size 167×270 pixels), which
we restore by the non-overlapping domain decomposition algorithm (5.2) with µ = 100 in the
upper half and µ = 1 in the lower half, α1 = 5

3 , α2 = 50
3 , γ = 0.01, and δ = 0.99. The computed

result is shown in Figure 5.3(b). By depicting the minimal norm of Lagrange multipliers η(n) we
check additionally, whether the algorithm converges to the right solution. In Figure 5.3(c) we see
the progress of the minimal norm of Lagrange multipliers for the image in Figure 5.3(a) with size
167×270 pixels. By improving the image resolution yielding a three times finer grid, i.e., the image
has now 501× 810 pixels, we obtain a sequence (η(n))n which converges to a significantly smaller
norm; see Figure 5.3(d). If we keep increasing the image resolution we observe that the sequence
(η(n))n continues to converge to smaller and smaller values. This behaviour may be attributed to

the fact that the support of η
(n)
i is confined to a small stripe of width 2 pixels and this depends

on the mesh size h.

With respect to the Gauss-Southwell-r rule considered in Section 4.2.2, we observe in our
previous L1-L2-TV minimization examples that inequality (4.24) is more likely to be satisfied
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(a) (b)

(c) (d)

Fig. 5.3. Non-overlapping domain decomposition algorithm for L1-L2-TV minimization. Parameters:
α1 = 5

3
, α2 = 50

3
, γ = 0.01, µ = 100 in Ω1 and µ = 1 in Ω2, δ = 0.99, and ROF-problem solved via Split

Bregman with tolerance 10−4. In (a) we show an image of size 167× 270 pixels with a missing part (black
heart) and corrupted by 2% salt-and-pepper noise and Gaussian noise with variance 0.001. The restored

image is shown in (b). In (c) we depict the progress of the minimal norm of Lagrange multipliers η(n) as
well as in (d) for a three times finer grid.

with a fixed constant ν > 0 for overlapping rather than non-overlapping domain decomposition.
For instance, for the problem depicted in Figure 5.1 the Gauss-Southwell-r rule is satisfied with
ν ≤ 0.03837 along the iteration in the overlapping case. For the non-overlapping decomposition
one has ν ≤ 0.000195.

Sequential Domain Decomposition Algorithm versus global L1-L2-TV Algorithm. We also com-
pare the performance of the sequential domain decomposition algorithms with the L1-L2-TV al-
gorithm, which solves the considered problems on all of Ω without any splitting into subdomains.
Since we are comparing now the convergence speed of different algorithms the stopping criterion
used before is no longer suitable. Now we stop the algorithms as soon as the energy Jα1,α2

reaches
a significance level J∗, i.e., when Jα1,α2

(u(n)) ≤ J∗ for the first time. The level J∗ is chosen
visually, i.e., we once restore the image of interest until we observe a visually satisfying restoration
and record the associated energy value as J∗. Such a reasonable restoration can be obtained, for
example, by running one of the algorithms until ‖u(n) − u(n+1)‖ < 10−6 for the first time, as it
was done above for the domain decomposition algorithms.

For our comparison we solved the problem associated with Figure 5.1 by considering splittings
into D = 2, 4, 8 overlapping and non-overlapping stripes, as shown in Figure 5.1, and into D = 4
overlapping and non-overlapping windows, as depicted in Figure 5.4. The width w of the overlap is
chosen to be 2 or 10 pixels. We stop the algorithms as soon as they reach the significant energy of
J∗ = 0.098973. In Table 5.1 we summarize our findings. One clearly observes that the sequential
domain decomposition algorithms are much faster than the global L1-L2-TV algorithm. Since
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(a) (b)

Fig. 5.4. Splitting of the image in Figure 5.1 into 4 non-overlapping and overlapping windows.

# domains non-overlapping alg. overlapping alg.
(overlap w = 10
pixels)

overlapping alg.
(overlap w = 2
pixels)

D = 1 (L1-L2-TV alg.): 471 s / 285 it / 44.55

D = 2 (stripe): 170 s / 41 it / 45.43 /
2.1 · 10−7

162 s / 38 it / 45.13
/ 1.1 · 10−7

160 s / 40 it / 45.36
/ 9.1 · 10−8

D = 4 (stripe): 215 s / 41 it / 45.41 /
1.5 · 10−7

225 s / 33 it / 45.18
/ 1.3 · 10−7

234 s / 39 it / 45.40
/ 1.0 · 10−7

D = 4 (window): 207 s / 41 it / 45.37 /
7.6 · 10−8

168 s / 36 it / 45.02
/ 8.0 · 10−8

164 s / 40 it / 45.31
/ 6.4 · 10−8

D = 8 (stripe): 285 s / 41 it / 45.33 /
1.1 · 10−7

213 s / 24 it / 45.01
/ 7.8 · 10−8

248 s / 35 it / 45.25
/ 7.0 · 10−8

Table 5.1
Restoration of the image in Figure 5.1: Computational performance (CPU time in seconds / the

number of iterations / PSNR-value / min{‖η1‖2, . . . ‖ηD‖2}) for the global L1-L2-TV algorithm and for the
sequential domain decomposition algorithms with α1 = α2 = 0.4 for different numbers of subdomains (D =
2, 4, 8) and overlapping sizes. The algorithms are stopped as soon as the energy reaches the significance
level J∗ = 0.098973.

the domain decomposition approach considered here is sequential, the convergence slows down
in time when the number of subdomains is increased. Nevertheless, the number of iterations is
non-increasing with the number of subdomains, and even decreasing for the overlapping version.
Moreover, in Table 5.1 we also present the minimal norm of Lagrange multipliers to indicate that
in all of our experiments we are indeed very close to a global minimizer.

A different behaviour can be observed for the deblurring problem of Figure 5.2, where only
salt-and-pepper noise is present and therefore α2 is set to zero. We again tested the sequential
domain decomposition algorithm for different splittings (D = 2, 4, 8) and compared the perfor-
mance with the global algorithm. Now the sequential domain decomposition approach becomes
computationally more expensive. However, we note that in general one should not expect that
the sequential domain decomposition algorithms always outperform the global one. Here this is
in particular true as T1 is a non-local operator and the subproblems involve constraints, adding
to the complexity of the solution approach.

In the next section we show the successful application of our solvers when both Gaussian noise
as well as salt-and-pepper noise are present simultaneously (and in a non-separated fashion) in an
image; see the results depicted in Figure 5.5.
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# domains non-overlapping alg. overlapping alg.
(overlap w = 10
pixels)

overlapping alg.
(overlap w = 2
pixels)

D = 1 (L1-TV alg.): 153 s / 6 it / 82.03

D = 2 (stripe): 566 s / 10 it / 81, 18 580 s / 9 it / 81.15 550 s / 9 it / 81.22

D = 4 (stripe): 445 s / 10 it / 81.17 484 s / 9 it / 81.02 430 s / 9 it / 81.18

D = 4 (window): 393 s / 5 it / 80.26 384 s / 5 it / 80.31 458 s / 5 it / 80.29

D = 8 (stripe): 508 s / 10 it / 81.19 467 s / 9 it / 80.97 486 s / 9 it / 81.18

Table 5.2
Restoration of the image in Figure 5.2: Computational performance (CPU time in seconds / the

number of iterations / PSNR-value) for the global L1-TV algorithm and for the sequential domain decom-
position algorithms with α1 = 5/3 for different numbers of subdomains (D = 2, 4, 8) and overlapping sizes.
The algorithms are stopped as soon as the energy reaches the significance level J∗ = 0.03052.

5.4.2. Numerical Results – Parallel Algorithms. Finally, we show the efficiency of
the parallel algorithm in (3.2) for non-overlapping and overlapping domain decomposition and
compare their numerical performance with the L1-L2-TV algorithm introduced in Section 2.2.
Note that in the L1-L2-TV algorithm the problem is solved on all of Ω without any splitting
into subdomains. In the domain decomposition algorithms we consider domain splittings into
D = 4, 8, 16, 32 subdomains. Since we are comparing the convergence speed of different algorithms
we stop the algorithms as soon as the energy Jα1,α2 reaches a significance level J∗, as already
described above.

For our comparison let us consider the image in Figure 5.5, which is of size 1920 × 2576
pixels and corrupted by Gaussian noise with standard deviation 0.01 as well as by 10% salt-and-
pepper noise on all Ω; see Figure 5.5(a). In the domain decomposition algorithms as well as
in the L1-L2-TV algorithm we denoise this image by choosing α1 = 0.5, and α2 = 0.4. The
computations are done in Matlab on a Linux cluster with 32 kernels, where each kernel has 2
processors and each processor 4 cores, i.e., on a computer with 256 cores, and the multithreading-
option is activated such that all algorithms (including the L1-L2-TV algorithm without domain
decomposition) take advantage of the parallel infrastructure offered by the hardware. For the
domain decomposition algorithms we split the domain into non-overlapping or overlapping strips.
The overlap is chosen to be a stripe of width 10 pixels, i.e., the overlap is of size 10× 2576 pixels.
For different numbers of splittings we show in Table 5.3 the required computational time and the
number of iterations until the algorithms reach the significant energy of J∗ = 0.080041483485 (see
Figure 5.5(b) for the restored image). Note that the structure of the problems in the subdomains
is different from the one of the global problem. More precisely, on each subdomain we have to
solve constrained minimization problems, cf (3.3), which are structurally more difficult to solve
than just minimizing an energy as for the global problem. Hence by domain decomposition on
the one hand we reduce the dimensionality of the problem, but on the other hand we increase
the complexity on each subdomain. Additionally, we also have to take the communication time of
the processors into account. These facts add to the overall computing time. Therefore we cannot
expect a very dramatic decrease in computational time once the number of subdomains gets large.
Nevertheless, we see in Table 5.3 that the domain decomposition algorithms for splittings with
D = 4, 8, 16, 32 are still much faster than without decomposition (D = 1). In this case, for a non-
overlapping splitting into 8 domains the best performance is guaranteed, while for decomposing
into 16 or more domains the algorithm already requires more time to reach its stopping criterion.

Splitting the image domain into larger subdomains, as it happens for an overlapping decom-
position, one may expect an increase in computational time. This is not necessarily true, as the
solution in the overlap is computed twice per iteration, which decreases the number of iterations.
We even see in Table 5.3 that for a fixed number of subdomains the larger the overlapping region is
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the less iterations are performed. In our numerical experiments we observe that for an overlapping
decomposition into 16 domains with overlaps of size 50 × 2576 pixels the domain decomposition
algorithm performs best with respect to the number of iterations and computational time.

We also observe that with increasing the number of subdomains the number of iterations is
decreasing. For a non-overlapping decomposition the number of iterations is only decreasing very
slowly, while for overlapping decompositions the decay is more noticeable. For the overlapping
splitting when doubling the number of domains we see from Table 5.3 that for a larger overlap
the absolute reduction of the number of iterations is larger than for a smaller overlap, while the
relative reduction is bigger for smaller overlap.

(a) (b)

(c)

Fig. 5.5. Parallel domain decomposition for L1-L2-TV minimization of an image (size 1920 × 2576
pixels) corrupted by Gaussian noise with standard deviation 0.01 and 10% salt-and-pepper noise, see (a).
In (b) we show the restored image, whereby we used the non-overlapping domain decomposition algorithm
for 8 domains with the following parameters: α1 = 0.5, α2 = 0.4, γ = 0.01, µ = 10, δ = 0.99, and
ROF-problem solved via Split Bregman with tolerance 10−3. In (c) we depict the progress of the minimal

norm of Lagrange multipliers η(n).

6. Conclusion. We have proposed a combined L1-L2-TV energy with total variation regu-
larization which outperforms the pure L1-TV or L2-TV models as it preserves details better than
the L2-TV model and it does not suffer from a sudden loss of image features like the L1-TV model.
Moreover, it is superior (in PSNR) in restoration tasks where images are corrupted simultaneously
by Gaussian and salt-and-pepper noise.

For the numerical solution of the L1-L2-TV energy we have proposed and analyzed sequential
and parallel subspace correction methods, which generate a convergent (sub)sequence of iterates
and a monotone decrease of the energy. Moreover, we have shown that the distance between
limit points and the global minimizer of the L1-L2-TV energy is bounded by the minimal norm of
Lagrange multipliers associated with involved subspace projection constraints. In our numerical
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# domains non-overlapping alg. overlapping alg.
(overlap 10 × 2576
pixels)

overlapping alg.
(overlap 50 × 2576
pixels)

D = 1 (L1-L2-TV alg.): 7882 s / 698 it

D = 4: 5727 s / 617 it 5834 s / 607 it 5998 s / 561 it

D = 8: 5090 s / 618 it 5074 s / 596 it 5265 s / 499 it

D = 16: 5409 s / 588 it 5432 s / 560 it 5014 s / 371 it

D = 32: 6814 s / 586 it 6605 s / 501 it 5203 s / 242 it

Table 5.3
Denoising for the image in Figure 5.5: Computational performance (CPU time in seconds and the

number of iterations) for the global L1-L2-TV algorithm and for the parallel domain decomposition algo-
rithms with α1 = 0.5, α2 = 0.4 for different numbers of subdomains (D = 4, 8, 16, 32) and overlapping
sizes.

experiments this norm appeared often very small or it might even tend to 0, indicating that
convergence to the global optimum was obtained. However, in the rare cases where the minimal
norm of Lagrange multipliers did not tend to 0 we observed a resolution dependent effect reducing
the multiplier norm under increasing resolution. This behavior may certainly motivate further
research on the convergence of subspace correction methods for minimizing non-smooth and non-
additive objectives. We have also shown that the parallel version pays off up to the number of
subdomains where the communication between processors becomes dominant.

We also mention that the theoretical analysis of subspace correction methods for non-smooth
and non-additive functionals is still far from being complete. In particular, in general Banach
spaces there is not much known about such methods and their convergence to a global minimizer.
Not even in a discrete setting for dimensions d > 1 this question has yet been answered without
invoking (rather restrictive) assumptions.

Appendix A. Proof of Proposition 4.5. The proof of Proposition 4.5 as stated here
is similar to the one in [50, Proposition 4.1]. It is clear that ζ ∈ ∂Jα1,α2

(u) if and only if
u ∈ argminv∈H{Jα1,α2

(v)− 〈ζ, v〉H}, and let us consider the following variational problem:

inf
v∈H
{Jα1,α2

(v)−〈ζ, v〉H} = inf
v∈H
{α1‖T1v−g1‖`1(Ω)+α2‖T2v−g2‖2`2(Ω)+ϕ(|∇v|)(Ω)−〈ζ, v〉H}. (P)

We denote such an infimum by inf(P). Now we compute (P∗), the dual of (P). Let F : H → R,
G : Hd×H×H → R, G0 : Hd → R, G1 : H → R, G2 : H → R, such that F(v) = −〈ζ, v〉H, G0(w0) =
ϕ(|w0|)(Ω), G1(w̄) = α1‖w1 − g1‖`1(Ω), G2(w̄) = α2‖w2 − g2‖2`2(Ω), G(w) = G0(w0) + G1(w1) +

G2(w2), with w = (w0, w1, w2) ∈ Hd ×H×H. Then the dual problem of (P) is given by (cf. [26,
p 60])

sup
p∗∈Hd×H×H

{−F∗(Λ∗p∗)− G∗(−p∗)}, (P∗)

where Λ : H → Hd ×H×H is defined by Λv = ((∇v)1, . . . , (∇v)d, T1v, T2v) and Λ∗ is its adjoint.
We denote the supremum in (P∗) by sup(P∗). Using the definition of the conjugate function we
compute F∗ and G∗. In particular, we have

F∗(Λ∗p∗) = sup
v∈H
{〈Λ∗p∗, v〉H −F(v)} = sup

v∈H
〈Λ∗p∗ + ζ, v〉H =

{
0 if Λ∗p∗ + ζ = 0,

∞ otherwise,
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where p∗ = (p∗0, p
∗
1, p
∗
2), and due to the separability of G we find

G∗(p∗) = sup
w∈Hd×H×H

{〈p∗, w〉Hd×H×H − G(w)}

= sup
w0∈H

{〈p∗0, w0〉Hd − G0(w0)}+ sup
w1∈H

{〈p∗1, w1〉H − G1(w1)}+ sup
w2∈H

{〈p∗2, w2〉H − G2(w2)}

= G∗0 (p∗0) + G∗1 (p∗1) + G∗2 (p∗2).

We have that G∗2 (p∗2) =
〈
p∗2

4α2
+ g2, p

∗
2

〉
H

, G∗1 (p∗1) = 〈p∗1, g1〉H if |p∗1| ≤ α1, and (see [26]) G∗0 (p0
∗) =

ϕ∗+ (|p0
∗|) (Ω) if |p∗0(x)| ∈ Domϕ∗+, where ϕ∗+ is the conjugate function of ϕ+ defined by ϕ+(t) :=

ϕ(|t|) for t ∈ R. Therefore we can write (P∗) in the following way

sup
p∗∈K

{
−
〈
−p∗2
4α2

+ g2,−p∗2
〉
H
− 〈g1,−p∗1〉H − ϕ∗+ (|p∗0|) (Ω)

}
, (A.1)

where K =
{
p∗ ∈ Hd ×H×H : |p0

∗(x)| ∈ Domϕ∗+ and |p∗1(x)| ≤ α1 for all x ∈ Ω,Λ∗p∗ + ζ = 0
}

.
The function ϕ+ also fulfills assumption (Aϕ)(ii) (i.e., there exists c1 > 0, b ≥ 0 such that c+z −
b ≤ ϕ+(z) ≤ c+z + b, for all z ∈ R+). The conjugate function of ϕ+ is given by ϕ∗+(t) =
supz∈R{〈t, z〉 − ϕ+(z)}. Using the previous inequalities and the fact that ϕ+ is an even function
(i.e., ϕ+(z) = ϕ+(−z) for all z ∈ R) we have

sup
z∈R
{〈t, z〉− c+|z|+ b} ≥ sup

z∈R
{〈t, z〉−ϕ+(z)} ≥ sup

z∈R
{〈t, z〉− c1|z|− b} =

{
−b if |t| ≤ c1,
∞ else.

(A.2)

In particular, one can see that t ∈ Domϕ∗+ if and only if |t| ≤ c1.
From Λ∗p∗ + ζ = 0 we obtain

〈Λ∗p∗, ω〉H + 〈ζ, ω〉H = 〈p∗,Λω〉Hd+2 + 〈ζ, ω〉H
= 〈p∗0,∇ω〉Hd + 〈p∗1, T1ω〉H + 〈p∗2, T2ω〉H + 〈ζ, ω〉H = 0 for all ω ∈ H.

(A.3)

Then, since 〈p0
∗,∇ω〉Hd = 〈− div p∗0, ω〉H (see Section 4.1), we have T ∗1 p

∗
1 +T ∗2 p

∗
2− div p∗0 + ζ = 0.

Hence we can write K in the following way

K =
{
p∗ = (p∗0, p

∗
1, p
∗
2) ∈ Hd ×H×H :|p0

∗(x)| ≤ c1 and |p∗1(x)| ≤ α1 for all x ∈ Ω,

T ∗1 p
∗
1 + T ∗2 p

∗
2 − div p∗0 + ζ = 0

}
.

We now apply the duality results from [26, Theorem III.4.1], since the objective functional in
(P) is convex, continuous with respect to Λv in Hd ×H ×H, and inf(P) is finite. Consequently,
inf(P)= sup(P∗)∈ R and (P∗) has a solution M = (M0,M1,M2) ∈ K.

Let us assume that u is a solution of (P) and M is a solution of (P∗). From inf(P)= sup(P∗)
we get

α1‖T1u− g1‖`1(Ω) + α2‖T2u− g2‖2`2(Ω) + ϕ(|∇u|)(Ω)− 〈ζ, u〉H

= −
〈
−M2

4α2
+ g2,−M2

〉
H
− 〈g1,−M1〉H − ϕ

∗
1 (|M0|) (Ω),

(A.4)

whereM = (M0,M1,M2) ∈ Hd×H×H, |M0(x)| ≤ c1, |M1| ≤ α1, and T ∗1M1+T ∗2M2−divM0+ζ =
0, which verifies (4.8). In particular, (A.3) and (A.4) yield

α1‖T1u− g1‖`1(Ω) + α2‖T2u− g2‖2`2(Ω) + ϕ(|∇u|)(Ω) + 〈M1, T1u〉H + 〈M2, T2u〉H

+ 〈M0,∇u〉Hd +

〈
−M2

4α2
+ g2,−M2

〉
H

+ 〈g1,−M1〉H + ϕ∗1 (|M0|) (Ω) = 0.
(A.5)
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We rewrite (A.5) in the following form:∑
x∈Ω

α1|(T1u− g1)(x)|+
∑
x∈Ω

α2|(T2u− g2)(x)|2 +
∑
x∈Ω

ϕ(|(∇u)(x)|) +
∑
x∈Ω

M1(x)(T1u)(x)

+
∑
x∈Ω

M2(x)(T2u)(x) +
∑
x∈Ω

〈M0(x),∇u(x)〉Rd −
∑
x∈Ω

(
−M2(x)

4α2
+ g2(x)

)
(M2)(x)

+
∑
x∈Ω

g1(x)(−M1)(x) +
∑
x∈Ω

ϕ∗1 (|M0(x)|) = 0.

(A.6)

Now for the various terms in (A.6) we have:
1. α1|(T1u− g1)(x)|+M1(x)((T1u)(x)− g1(x)) ≥ 0 since |M1(x)| ≤ α1.

2. α2|(T2u−g2)(x)|2 +M2(x)(T2u(x)−g2(x))+ M2(x)2

4α2
=
(√

α2(T2u− g2)(x) + M2(x)
2
√
α2

)2

≥ 0.

3. ϕ(|(∇u)(x)|) + 〈M0(x),∇u(x)〉Rd + ϕ∗1 (|M0(x)|) ≥ ϕ(|(∇u)(x)|) −
∑d
j=1 |M

j
0 (x)||Sj | +

ϕ∗1 (|M0(x)|) ≥ 0 by the definition of ϕ∗1, since

ϕ∗1 (|M0(x)|) = sup
S=(S1,··· ,Sd)∈Rd

{
d∑
j=1

|M j
0 (x)||Sj | − ϕ(|S|)}.

Hence, condition (A.6) reduces to

ϕ(|(∇u)(x)|) + 〈M0(x),∇u(x)〉Rd + ϕ∗1 (|M0(x)|) = 0, for all x ∈ Ω, (A.7)

M2(x) = −2α2(T2u− g2)(x), for all x ∈ Ω, (A.8)

α1|(T1u− g1)(x)|+M1(x)((T1u)(x)− g1(x)) = 0, for all x ∈ Ω. (A.9)

Conversely, if there exists M = (M0,M1,M2) ∈ Hd×H×H with |M0(x)| ≤ c1 and |M1| ≤ α1,
which fulfills conditions (4.5) and (4.8), then it is clear from our previous considerations that
equation (A.4) holds. Let us denote the functional on the left-hand side of (A.4) by

P (u) := α1‖T1u− g1‖`1(Ω) + α2‖T2u− g2‖2`2(Ω) + ϕ(|∇u|)(Ω)− 〈ζ, u〉H

and the functional on the right-hand side of (A.4) by

P ∗(M) := −
〈
−M2

4α2
+ g2,−M2

〉
H
− 〈g1,−M1〉H − ϕ

∗
1 (|M0|) (Ω).

Hence inf P = inf(P) and supP ∗ = sup(P∗). Since P is convex, continuous with respect to
Λu in Hd × H × H, and inf(P) is finite we know from duality results [26, Theorem III.4.1] that
inf(P)= sup(P∗)∈ R. We assume that M is no solution of (P∗), i.e., P ∗(M) < sup(P∗), and u is
no solution of (P), i.e, P (u) > inf(P). Then we have that P (u) > inf (P) = sup (P∗) > P ∗(M).
Thus (A.4) is valid if and only if M is a solution of (P∗) and u is a solution of (P) which is
equivalent to ζ ∈ ∂Jα1,α2

(u).
If, additionally, ϕ is differentiable and |(∇u)(x)| 6= 0 for x ∈ Ω, then M0(x) can be computed

explicitly. In fact, from equation (A.7) (respectively (4.5)) we have

ϕ∗1 (| −M0(x)|) = −〈M0(x), (∇u)(x)〉Rd − ϕ(|(∇u)(x)|). (A.10)

From the definition of conjugate functions we have

ϕ∗1 (| −M0(x)|) = sup
t∈R
{| −M0(x)|t− ϕ1(t)} = sup

t≥0
{| −M0(x)|t− ϕ1(t)}

= sup
t≥0

sup
S∈Rd
|S|=t

{〈−M0(x), S〉Rd − ϕ1(|S|)} = sup
S∈Rd

{〈−M0(x), S〉Rd − ϕ(|S|)} .
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Now, if |(∇u)(x)| 6= 0 for x ∈ Ω, then it follows from (A.10) that the supremum is taken in
S = |(∇u)(x)| and we have ∇S(−〈M0(x), S〉Rd − ϕ(|S|)) = 0 which implies

M j
0 (x) = −ϕ

′(|(∇u)(x)|)
|(∇u)(x)|

(∇u)j(x) j = 1, . . . , d,

and verifies (4.9). This finishes the proof.
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