
UNIVERSITÄT LINZ
JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Subspace Correction and Domain
Decomposition Methods for Total Variation

Minimization

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Dipl.-Ing. Andreas Langer

Angefertigt am:

Johann Radon Institute for Computational and Applied Mathematics

Beurteilung:

Prof. Dr. Massimo Fornasier, Johann Radon Institute for Computational
and Applied Mathematics (Betreuung)
Prof. Dr. Daniel Cremers, Technische Universität München

Linz, Juli 2011

To my mother, Maria Langer

Abstract

The minimization of the total variation is a well-established technique of preserving
edges and discontinuities. Therefore it has wide applicability in image processing,
where one is interested in recovering a corrupted image while preserving edges in
the image. In the last decades, in the literature, there have been introduced many
different approaches and algorithms for minimizing the total variation. These stan-
dard techniques are iterative-sequentially formulated and therefore not able to solve
large scale simulations in acceptable computational time. For such large problems
we need to address methods that allow us to reduce the problem to a finite sequence
of subproblems of a more manageable size, perhaps computed by one of the standard
techniques. With this aim, we introduce subspace correction and domain decom-
position methods for total variation minimization. Such methods split the space of
the initial problem into several smaller subspaces. By restricting the function to
be minimized to the subspaces, a sequence of local problems, which may be solved
easier and faster than the original problem, is constituted. Then the solution of the
initial problem is obtained via the solutions of the local subproblems by “gluing”
them together. In the case of domain decomposition for total variation minimization
the crucial difficulty is the correct treatment of the interfaces of the domain decom-
position patches, with the preservation of crossing discontinuities and the correct
matching where the solution is continuous instead. Due to the fact that the total
variation is non-smooth and non-additive, one encounters additional difficulties in
showing convergence of more general subspace correction strategies to global mini-
mizers. We show a classical counterexample from the literature, which emphasizes
that for non-smooth and non-additive problems such alternating techniques are far
from being obviously converging to an expected minimizer.

Moreover we discuss a subspace correction method for total variation minimiza-
tion based on an orthogonal wavelet decomposition. For this algorithm we are able to
construct another counterexample, which confirms that in general we cannot expect
convergence of such splitting algorithms to a minimizer of the original problem.

Nevertheless, we are able to propose an implementation of overlapping and non-
overlapping domain decomposition algorithms for total variation minimization with
the guarantee of convergence to a minimizer of the original functional and the mono-
tonic decay of the energy. Let us stress that these are the first successful attempts
of addressing domain decomposition strategies for the non-linear, non-additive, and
non-smooth problem of total variation minimization with a rigorous convergence
analysis. We provide several numerical experiments, showing the successful appli-
cation of the algorithm for the restoration of 1D signals and 2D images.

i

ii

Zusammenfassung

Die Minimierung der totalen Variation ist eine gängige Technik, Kanten und
Unstetigkeiten zu erhalten. Deshalb genießt sie weite Anwendung in der Bildverar-
beitung, wo man daran interessiert ist, beschädigte Bilder zu rekonstruieren, wobei
Kanten in den Bildern erhalten bleiben sollen. In den letzten Jahrzehnten wurden
in der Literatur viele verschiedene Herangehensweisen und Algorithmen zur Mini-
mierung der totalen Variation vorgestellt. Diese Standardtechniken sind iterativ-
sequenziell formuliert und deshalb nicht in der Lage, sehr große Simulationen in
akzeptabler Berechnungszeit zu lösen. Für solche großen Probleme müssen wir Me-
thoden anwenden, welche uns erlauben das ursprüngliche Problem zu einer endlichen
Folge von Teilproblemen von leichter handhabbarer Größe zu reduzieren, die dann
womöglich durch eine der Standardtechniken gelöst wird. Mit dieser Absicht führen
wir Unterraum-Korrekturverfahren und Gebietszerlegungsmethoden zur Minimie-
rung der totalen Variation ein. Solche Methoden teilen den Raum des Anfangspro-
blems in mehrere kleinere Teilräume. Durch die Beschränkung der zu minimierenden
Funktion auf die Unterräume wird eine Folge von lokalen Problemen, welche leichter
und schneller als das originale Problem gelöst werden können, gebildet. Die Lösung
des ursprünglichen Problems wird dann durch

”
zusammenkleben“ der Lösungen

der lokalen Teilprobleme erreicht. Im Fall einer Gebietszerlegung ist die wesentliche
Schwierigkeit bei der Minimierung der totalen Variation die korrekte Behandlung
der Schnittstellen zwischen den Teilgebieten mit der Erhaltung von querenden Un-
stetigkeiten und Stetigkeiten. Auf Grund der Tatsache, dass die totale Variation
nicht glatt und nicht additiv ist, begegnen wir zusätzlichen Schwierigkeiten, Kon-
vergenz von allgemeinen Unterraum-Korrekturverfahren zu globalen Minimierern
zu beweisen. Wir zeigen ein klassisches Gegenbeispiel aus der Literatur, welches uns
verdeutlicht, dass für nicht glatte und nicht additive Probleme solche alternierenden
Techniken im Allgemeinen nicht zum erwarteten Minimierer konvergieren.

Weiters stellen wir ein Unterraum-Korrekturverfahren zur Minimierung der to-
talen Variation vor, welches auf einer orthogonalen Wavelet-Zerlegung basiert. Für
diese spezielle Methode sind wir in der Lage, ein weiteres Gegenbeispiel zu konstru-
ieren, welches bestärkt, dass wir generell für solche Algorithmen keine Konvergenz
zu einem Minimierer des originalen Problems erwarten können.

Trotzdem ist es uns möglich, für die Minimierung der totalen Variation eine
Implementierung von überlappenden und nicht überlappenden Gebietszerlegungs-
algorithmen vorzuschlagen, die die Konvergenz zu einem Minimierer des originalen
Funktionals und den monotonen Abfall der Energie garantiert. Wir betonen, dass
dies die ersten erfolgreichen Versuche sind, Gebietszerlegungsstrategien für das nicht
lineare, nicht additive und nicht glatte Problem der Minimierung der totalen Variati-
on, deren Konvergenz ausführlich analysiert ist, anzuwenden. Wir zeigen numerische
Experimente, die die erfolgreiche Anwendung dieser Algorithmen unterstreichen.

iii

iv

Acknowledgments

I would like to express my deep gratitude to my supervisor Massimo Fornasier
for introducing me to interesting and challenging problems, for encouraging me to
believe in myself, for giving me and showing me great new opportunities, and for
being a mentor and a friend. Moreover I am very thankful to Daniel Cremers for
nicely agreeing to be the second referee of this thesis.

Many thanks go to Luminiţa Vese for her great support, for giving me the pos-
sibility to visit the Department of Mathematics at the University of California, Los
Angeles, and providing financial support during my stay there. Moreover, she helped
me to make my visit very enjoyable and a very positive experience. It was an honor
for me to visit and to work at the University of California, Los Angeles, and I am
glad that I had the chance to meet and to discuss with several very interesting
mathematicians there. I had a great time!

I would like to thank all my collaborators for giving me new insights in mathe-
matical problems and for everything I learnt from them. In particular, I owe many
thanks to Carola-Bibiane Schönlieb for encouraging and inspiring me, and for being
a good colleague and friend. Working with you is great fun! I am also particularly
thankful to Yunho Kim and Stanley Osher for interesting and fruitful discussions,
which enlarged my scope tremendously.

A lot of thanks go to all my colleagues at the Johann Radon Institute for Compu-
tational and Applied Mathematics (RICAM) and particularly to the group “Analysis
of Partial Differential Equations” for their hospitality and for providing an excellent
scientific environment. In particular, I would like to thank Francesco Solombrino
for his help, hints, and support that improved this thesis immensely.

I gratefully acknowledge the financial support provided by the FWF project Y
432-N15 START-Preis Sparse Approximation and Optimization in High Dimensions
and the project WWTF Five senses-Call 2006, Mathematical Methods for Image
Analysis and Processing in the Visual Arts.

I owe very special thanks to my family, in particular to my parents Maria and
Thomas Langer and my brother Gregor Langer, who supported me through the
years in good and in bad times, and to my girlfriend, Mădălina Hodorog, for always
being there for me, for supporting me, and for encouraging me. I also would like to
thank all my friends for distracting me from work in my spare time.

v

vi

Contents

Abstract i

Zusammenfassung iii

Acknowledgments v

1 Introduction 1

1.1 Total Variation Minimization . 1

1.1.1 Applications . 4

1.1.2 Methods for Total Variation Minimization 7

1.2 Basic Idea of Subspace Correction and Domain Decomposition 9

1.2.1 Non-overlapping Domain Decomposition 10

1.2.2 Overlapping Domain Decomposition 13

1.3 Subspace Correction for ℓ1-norm Minimization 17

1.3.1 Sequential Algorithm . 18

1.3.2 Parallel Algorithm . 19

1.3.3 Multidomain Splitting . 20

1.4 On this Work . 20

2 Preliminaries 23

2.1 Convex Functions . 23

2.2 Duality in Convex Optimization . 24

2.2.1 Conjugate Functions . 24

2.2.2 Computation of Conjugate Functions 25

2.2.3 The Dual Problem . 26

2.3 Subdifferentiability . 28

2.3.1 Subdifferential Calculus . 28

2.4 Basic Definitions on Measures . 29

2.5 Distributional Derivative . 30

2.6 Functions of Bounded Variation . 31

2.7 On Γ-Convergence: Discrete to Continuous Approximation 33

vii

3 Subspace Correction for Non-smooth and Non-additive Problems 40
3.1 An Alternating Algorithm for Orthogonal Splittings 41

3.1.1 Subspace Minimization . 42
3.1.2 Convergence of the Sequential Subspace Correction Method . 49

3.2 Counterexample for Wavelet Decomposition 54
3.2.1 Technical Issues . 56
3.2.2 Notations . 57
3.2.3 Description of the Algorithm 58
3.2.4 Main Result . 61
3.2.5 Proof of Theorem 3.2.4 . 71
3.2.6 Numerical Validation . 74

4 Domain Decomposition for Total Variation Minimization 81
4.1 Technical Issues . 81
4.2 The Overlapping Domain Decomposition Algorithm 82

4.2.1 Local Minimization by Lagrange Multipliers 84
4.2.2 Convergence of the Sequential Domain Decomposition Method 87
4.2.3 A Parallel Algorithm and its Convergence 93
4.2.4 Applications and Numerics for the Sequential Implementation 95

4.3 Non-overlapping Domain Decomposition Algorithm 105
4.3.1 Convergence of the Sequential Domain Decomposition Method 106
4.3.2 A Parallel Algorithm and its Convergence 108

4.4 Bregmanized Non-overlapping Domain Decomposition 109
4.4.1 Bregmanized Operator Splitting - Split Bregman Algorithm . 109
4.4.2 Solution of the Subspace Minimization Problems 111
4.4.3 Numerical Examples for Image Restoration 114

Bibliography 129

Eidesstattliche Erklärung 139

Curriculum Vitae 141

viii

Chapter 1

Introduction

1.1 Total Variation Minimization

In applications in image processing, one wants to recover at best an observed image,
which is corrupted by a measurement device and additionally by some noise e. Then
the observed data g can be described as

g = Tu+ e, (1.1)

where u is the unknown image and T a linear operator modeling the image-formation
device. We are in particular interested in the recovery of u from the given noisy
observed image g, when the operator T is not invertible or ill-conditioned. This is
indeed an inverse problem and thus regularization techniques are required to restore
the unknown image [55]. A good approximation of u may be obtained by minimizing
a functional of the type

functional = data term+ regularization term.

The data term enforces the consistency between the recovered and measured signal,
while the regularization term prevents overfitting. In our case we obtain then the
following minimization problem

argmin
u

∫

Ω

|Tu− g|2dx+ 2αF (u), (1.2)

where Ω ⊂ R
2 is the image domain, F is any functional representing the regulariza-

tion term, and α > 0 is a fixed regularization parameter weighting the importance
of the two terms.

We wonder now what will be a good choice for the regularization term F . If we
use a standard Tikhonov regularization we will consider, for example, the function

F (u) =
∫

Ω
|∇u|2dx, where ∇u(x) =

(
∂u
∂x1
, ∂u
∂x2

)

is the gradient of u in x ∈ Ω. Then

the function space for which both the data term and the regularization term are
well-defined is

W 1,2(Ω) = {u ∈ L2(Ω) : ∇u ∈ [L2(Ω)]2},

1

2 Chapter 1: Introduction

i.e., the Sobolev space of L2-functions with L2-derivatives. This choice of regular-
ization may have advantages, since the corresponding problem to solve is linear.
However, using the L2-norm of the gradient as a regularization term allows us to re-
move noises but the minimization of (1.2) performs too much smoothing and hence
does not preserve edges (i.e. intensity jumps along curves) and discontinuities across
hypersurfaces, i.e., across lines in 2-dimensions, see Figure 1.1. For our purposes a
good regularization term should ensure some smoothing and should preserve edges
and discontinuities.

(a) (b) (c)

Figure 1.1: The left picture shows the original image, which is then corrupted by some
noise, see (b). The right picture depict the restoration with F (u) = 1

2

∫

Ω |∇u|2dx.

A possible solution was given by Geman and Geman [68], who described a
stochastic relaxation algorithm, which generates a sequence of images that converges
in an appropriate sense to the maximum a posteriori estimate. More precisely, they
considered a discrete image g = (gi,j)1≤i,j≤N for N ∈ N and introduced an auxiliary
variable ℓ = (ℓi+1/2,j , ℓi,j+1/2)i,j to detect edges in the picture, i.e., ℓi+1/2,j = 1 if
there is an edge between (i, j) and (i + 1, j) and 0 otherwise. In the case when e
is some Gaussian noise with mean 0 and standard deviation σ, the reconstruction
of the observed image g, modeled as in (1.1), is then obtained by minimizing the
following energy with respect to u and ℓ

P(u, ℓ) +
1

2σ2

∑

i,j

|gi,j − Tui,j|2

where P is an a priori probability density which might be of the form

P(u, ℓ) = λ
∑

i,j

(
(1− ℓi+1/2,j)(ui+1,j − ui,j)

2 + (1− ℓi,j+1/2)(ui,j+1 − ui,j)
2
)

+µ
∑

i,j

(ℓi+1/2,j + ℓi,j+1/2)

with λ, µ > 0 [25].
Mumford and Shah [89] formulated this approach in a continuous setting by

observing that the set {ℓ = 1} can be interpreted as the edge collection K ⊂ Ω,

1.1 Total Variation Minimization 3

i.e., the set of 1-dimensional curves. Thus they introduced the following problem
originally proposed for image segmentation

min
u,K

λ

∫

Ω\K

|∇u|2dx+ µlength(K) +

∫

Ω

|u− g|2dx,

where T = I (the identity operator). This functional generated a lot of interest in
the last decades, see [2, 3, 40, 56, 65, 67, 82, 87].

In the context of image restoration Rudin, Osher and Fatemi [103] proposed to
use the total variation as a regularization technique. We recall that for u ∈ L1

loc(Ω)

V (u,Ω) := sup

{∫

Ω

u divϕ dx : ϕ ∈
[
C1
c (Ω)

]2
, ‖ϕ‖∞ ≤ 1

}

is the variation of u, where C1
c (Ω) denotes the space of C1-functions with compact

support in Ω and ‖ϕ‖∞ = supx
√∑

i ϕ
2
i (x). Moreover, u ∈ BV (Ω), the space

of bounded variation functions [2, 57], if and only if V (u,Ω) < ∞. In this case,
|Du|(Ω) = V (u,Ω), where |Du|(Ω) is the total variation of the finite Radon measure
Du, the derivative of u in the sense of distributions. If u ∈ W 1,1 (the Sobolev space
of L1-functions with L1-distributional derivatives), then |Du|(Ω) =

∫

Ω
|∇u|dx. It is

well-established that the total variation preserves edges and discontinuities across
hypersurfaces [25, 33]. Additionally it is convex and therefore also the minimization
problem, which reads then as

argmin
u

∫

Ω

|Tu− g|2dx+ 2α|Du|(Ω), (1.3)

becomes convex. Hence many tools from convex optimization can be used to solve
this problem. This is a big advantage with respect to the non-convex approach of
Mumford and Shah, where the energy has to be minimized with respect to u and
with respect to the edge collection K.

In this thesis we are interested in the efficient minimization in BV (Ω) of the
functional

J (u) := ‖Tu− g‖2L2(Ω) + 2α |Du| (Ω), (1.4)

where T : L2(Ω) → L2(Ω) is a bounded linear operator, g ∈ L2(Ω) is a datum,
and α > 0 is a fixed regularization parameter. More precisely, we are concerned
with minimizing J by means of subspace correction and domain decomposition.
That means, instead of minimizing (1.4) on the whole BV (Ω) we split the space
into several subspaces and minimize alternating on each subspace the functional of
interest.

Below we describe a few relevant and established applications, where total varia-
tion minimization is already successfully applied. We are aware that such examples
can be efficiently solved by several standard techniques proposed in the literature,
see Section 1.1.2. However, these applications provide us with fundamental tests
on which we can demonstrate that our proposed subspace correction and domain

4 Chapter 1: Introduction

decompositon methods work efficiently. Let us emphasize that these methods are
not restricted to such examples but can be used for more advanced applications, see
below.

1.1.1 Applications

The minimization of the total variation is successfully used in many image process-
ing problems, including image denoising, image deblurring, image inpainting, and
image zooming [3, 33]. Besides applications in imaging, the total variation is also
efficiently used in the computation of the evolution of hypersurfaces by mean curva-
ture [24] as well as in problems in optimal control [22], for example, when a singular
diffusion equation is involved [94]. In this thesis we will focus on problems which
appear in image processing. In particular, we will show successful applications of
the proposed algorithms for image restoration. Let us explain in short the most im-
portant applications in imaging successfully addressed by means of total variation
minimization. We refer to the books [33, 104, 3], without being exhaustive, for a
more detailed representation of these topics.

Image Denoising

Image denoising is the problem of removing the noisy part of an image. Typically
random noise is modeled by a probability distribution, where the kind of distribution
is chosen according to the application. In many cases the Gaussian distribution is
used, while for tomography the Poisson distribution and for radar imaging (speckle
noise) the Gamma distribution is required.

Is the corresponding noise of an observed image g additive with, for example, the
underlying Gaussian distribution, then g can be represented by (1.1) where T = I
is the identity operator. This model of additive Gaussian noise is often used for
testing the efficiency of denoising algorithms.

Another model arises if we assume that the noise e is acting multiplicatively on
the unknown image u, i.e., g = e · u. Then we speak about multiplicative noise.
There exist even more sophisticated noise models, which describe the observed data
by g = e(u), where the noise e is nonlinear depending on u. A prominent example in
this category is the salt-and-pepper noise, where the noisy discrete image g = (gi,j)
is given by

gi,j =







cmin with probability p1 ∈ [0, 1]

cmax with probability p2 ∈ [0, 1]

ui,j with probability 1− p1 − p2

,

with u = (ui,j), cmin = mini,j{ui,j}, cmax = maxi,j{ui,j}, and 1− p1− p2 > 0, see [28]
for more details. In Figure 1.2 we show some typical examples of noisy images.

Noises in images are caused by many sources, for instance:

• in astronomical imaging: atmospheric inhomogeneity in terms of density, tem-
perature, index of refraction, and so on;

1.1 Total Variation Minimization 5

(a) (b) (c)

(d) (e)

Figure 1.2: (a) Original image corrupted by (b) additive Gaussian noise (c) multiplicative
Gaussian noise (d) salt-and-pepper noise (e) speckle noise. Figures from [3].

• in medical imaging: spontaneous motion and material inhomogeneity of tissues
or organs;

• in night vision: fluctuation in heat, temperature, and infrared radiation;

• in general image acquisition: inherent thermal noises in electrooptical imaging
devices, physical or chemical noises of the target systems to be imaged, and
the inhomogeneity of intermediate media.

Looking at such pictures makes it often very difficult in spotting the important
features and patterns. Such failures could be either clinically fatal (as in tumor
detection) or scientifically costly [33].

Image Deblurring

The task of reconstructing a sharp image from its blurry observation is called im-
age deblurring. This problem often arises in optical, medical, and astronomical
applications, for example, in satellite imaging and remote sensing. There are three
major categories of blurs (i) the out-of-focus blur, (ii) the motion blur, and (iii) the
medium-induced blur, which are categorized according to their physical background,
see [33] for more details. In Figure 1.3 we show examples of two different blurry

6 Chapter 1: Introduction

images. However, in all the different cases a blurry image g is usually described as

g = Tu

where T is a blur operator modeled as a convolution Tu = κ ∗ u, with kernel κ.
If g is additionally also corrupted by some noise, the observed image data is then
generally modeled as in (1.1).

(a) (b)

Figure 1.3: (a) An example of motion blur (due to camera jittering); (b) an example of
out-of-focus blur. Figures from [33].

Image Inpainting

Image inpainting is the problem of filling in and recovering the missing parts of an
image, which is essentially done by using the given information in the surroundings.
Therefore it is a kind of interpolation.

Let the function g represent a partially corrupted image on the image domain
Ω, with loss of information on a domain D ⊂ Ω, cf. Figure 1.4. The domain D is
called inpainting domain. The task of image inpainting is to reconstruct the image
g given by

g = Tu

in the inpainting domain. Here now T = 1Ω\D· is a multiplier, i.e., Tu = 1Ω\D · u,
where 1Ω\D is the characteristic function of Ω \D. If additionally additive noise is
present in the observed data, then we generally describe g as in (1.1).

1.1 Total Variation Minimization 7

D

g is only available outside D

Figure 1.4: The image inpainting task is to reconstruct the image in the missing part D.

The term inpainting was originally used by museum restoration artists [54, 117]
and introduced into digital image processing in the work of Bertalmio et al. [9],
where a third order PDE inpainting model was constructed.

Image inpainting has a lot of applications in image processing, such as automatic
scratch removal in digital photos and old films [9, 31], digital restoration of ancient
paintings for conservation purposes [4], text erasing like dates, subtitles, or publicity
[9, 5, 31, 32], special effects like object disappearance and wire removal for movie
production [9, 32], zooming and super-resolution [5, 31, 83, 84, 112], lossy perceptual
image coding [31], decomposition-based image interpolation [10, 114], landmark-
based inpainting [73], removal of the laser dazzling effect [35], disocclusion [86, 93],
and so on.

For a broad discussion on techniques for image inpainting, we refer to [105].

1.1.2 Methods for Total Variation Minimization

Several numerical strategies to perform efficiently total variation minimization have
been proposed in the literature. Without claiming of being exhaustive, we list a few
of the relevant methods.

Gradient descent approach
The most obvious way to tackle the problem of minimizing total variation con-

strained functionals is to derive and to solve the Euler-Lagrange equations. Rudin,
Osher, and Fatemi [103] proposed to solve this nonlinear partial differential equation
by adding an artificial time as an evolution parameter and by minimizing the energy
along the gradient descent direction. Due to stability constraints in the time step
size, this algorithm is very slow in convergence.

Linearized approach
Vogel et al. [115, 51] introduced a method using a lagged diffusivity fixed point

iteration in order to solve the Euler-Lagrange equation of (1.3) with a “relaxed”
total variation constraint. The same approach is described by Chambolle and Lions

8 Chapter 1: Introduction

in [27], where the algorithm is reinterpreted as a two step minimization as iterative
re-weighted least squares. See also [43] for generalizations and refinements in the
context of sparse recovery.

Primal-dual approach
The presence of a highly nonlinear and non-differentiable term in the Euler-

Lagrange equation causes difficulties in convergence for Newton’s method, even when
combined with a globalization technique such as line search. In order to overcome
these difficulties Chan et al. [29] proposed a primal-dual approach, which is based
on the substitution of the non-differentiable term by a dual variable. Even more
efficient algorithms in this category have been introduced recently in the literature
[125, 99].

Projection onto convex sets
Chambolle suggested in [23] an iterative model based on projections onto convex

sets by considering the dual formulation of the total variation and exploiting the
corresponding optimality condition, see Section 3.2.6. Other mentionable work in
this category is the forward-backward splitting method by Combettes and Wajs [39],
who used a proximity operator, and the algorithm by Daubeschies et al. [45] that
amounts to a projected Landweber iteration.

Bregman distance approach
The idea of the Bregman Iteration is to separate the total variation term and the

L2-term of (1.3) by a variable-splitting and then to solve a constrained optimization
problem by penalizing and iteratively minimizing. Proposed by Osher et al. [96] as
an iterative “add-back-noise” regularization procedure, it turned out that it is actu-
ally the well-known Augmented Lagrangian Method [72]. Many further variations
on the theme of the Augmented Lagrangian Method and Bregman iterations have
been proposed [19, 20, 69, 97, 122, 123, 124].

Graph cuts
Graph cut algorithms are established techniques in computer vision. Recently

Darbon and Sigelle [46, 47] and Chambolle and Darbon [26] have introduced graph
cut methods for the minimization of (1.3) for T = I (the identity operator). This
type of methods compute faster an exact solution in the sense of machine precision
than all other iterative methods, known so far.

Approach by Nesterov
The approach presented by Nesterov [92] approximates the initial non-smooth

total variation by a function with Lipschitz continuous gradient. Then a smooth
function is minimized by an efficient gradient method of type [90, 91]. A modifica-
tion of this algorithm is introduced by Weiss et al. [119].

1.2 Basic Idea of Subspace Correction and Domain Decomposition 9

These approaches differ significantly, and they provide a convincing view of the
interest this problem has been able to generate and of its applicative impact. How-
ever, because of their iterative-sequential formulation, none of the mentioned meth-
ods is able to address in real-time, or at least in an acceptable computational time,
extremely large problems, such as 4D imaging (spatial plus temporal dimensions)
from functional magnetic-resonance in nuclear medical imaging, astronomical imag-
ing or global terrestrial seismic tomography. Let us mention that with a clever imple-
mentation of these above mentioned standard techniques on a parallel architecture
such as the graphics processing unit (GPU) one can accelerate them tremendously
[98].

We are interested to address methods to such large scale simulations, which allow
us to reduce the problem to a finite sequence of sub-problems of a more manageable
size, perhaps computable by one of the methods listed above. Such methods are
known under the name of subspace corrections and domain decompositions.

1.2 Basic Idea of Subspace Correction and Do-

main Decomposition

Subspace correction is a divide and conquer technique for solving partial differential
equations by iteratively solving on each subspace an appropriate defined subprob-
lem. Originally such methods were proposed for solving problems for which in the
variational formulation a smooth energy is alternately minimized on each subspace.
If the solution is non-smooth, then such splitting algorithms still work fine as long
as the energy splits additively with respect to the subspace decomposition. By con-
trast for non-smooth and non-additive energies, such as (1.4), subspace correction
methods are far from being obviously working successfully.

When analyzing such methods three main issues are of high interest: (i) conver-
gence, (ii) rate of convergence, and (iii) the independence of the rate of convergence
on the mesh size, which can be interpreted as a preconditioning strategy. For smooth
energies these concerns are at large well-established, while for non-smooth energies
convergence is ensured but no rate of convergence is usually known. In [116] Vonesch
and Unser could provide preconditioning effects of a subspace correction algorithm
for minimizing a non-smooth energy when applied to deblurring problems. However
when dealing with the complicated case of a non-smooth and non-additive problem
only very little is known. In this thesis we are now able to show for the non-smooth
and non-additive case that decomposition strategies may converge to a minimizer
of the original problem, cf. Theorem 4.2.8 and Theorem 4.3.1, and we are able to
show preconditioning effects in certain cases. However, a complete description of
the rate of convergence and independence of the mesh size is still a very open field
of research.

In this section we introduce domain decomposition methods for smooth problems
only, in order to describe the main ideas of such splitting techniques. Before we do

10 Chapter 1: Introduction

so, let us describe shortly the importance of such methods.

The main reason for the success of subspace correction methods is the reduc-
tion of the dimension with a potential for parallelization. In particular, subspace
correction is one of the most significant ways for devising parallel approaches that
can benefit strongly from multiprocessor computers. Such parallel approaches are
mandatory when one has to solve large-scale numerical problems, as they arise in
many application of physics and engineering. Let us summarize the main advan-
tages of such an approach, which include (i) dimension reduction; (ii) enhancement
of parallelism; (iii) localized treatment of complex and irregular geometries, singu-
larities and anomalous regions; (iv) and sometimes reduction of the computational
complexity of the underlying solution method. There are a variety of iterative meth-
ods appearing in the literature that fall into the category of subspace correction
methods, such as Jacobi method, Gauss-Seidel method, point or block relaxation
methods, multigrid methods, and domain decomposition methods. These techniques
can often be applied directly to the partial differential equation, but also the dis-
cretization of the problem is of major interest. We refer to [120] for more details on
subspace correction methods.

The first known subspace correction strategy was proposed by H. A. Schwarz
(1869)[106] who introduced an overlapping domain decomposition in order to prove
the existence of harmonic functions on irregular regions that are the union of over-
lapping subregions [100, p 26]. Domain decomposition refers to the decomposition
of the spatial domain into several subdomains. The original problem is then solved
by iteratively solving alternating problems.

We focus now on domain decomposition methods and explain in more detail the
underlying idea, which can be adapted to more general subspace correction methods.
In particular, we review the non-overlapping domain decomposition as well as the
alternating and parallel overlapping domain decomposition approaches in the case
of a splitting of the physical domain into two subdomains. Their generalization to
a partitioning into more domains requires more sophisticated techniques, such as
coloring, see [30, 100, 111] for more details. For simplicity we discuss these methods
now for the Poisson problem, i.e., second-order self-adjoint elliptic problem,

Lu ≡ −∆u = f in Ω, u = 0 on ∂Ω. (1.5)

Here u is the unknown function, ∆ denotes the Laplace operator, Ω is a 2-dimensional
domain, i.e., Ω ⊂ R

2, with Lipschitz boundary ∂Ω, and f is a given function. In what
follows we summarize a few important results on domain decomposition techniques.
For a broader discussion we refer to [100, 111].

1.2.1 Non-overlapping Domain Decomposition

Let us start by splitting the spatial domain Ω into two non-overlapping subdomains
Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅, cf. Figure 1.5. We define the

1.2 Basic Idea of Subspace Correction and Domain Decomposition 11

Ω1

Γ

Γ

Ω2

Ω1

Ω2

n
n

Figure 1.5: Non-overlapping decomposition into two domains.

interface between these two regions by Γ := ∂Ω1∩∂Ω2. In addition, we assume that
the boundaries of the subdomains are Lipschitz continuous.

Then problem (1.5) can be formulated as







Lu1 = f in Ω1

u1 = 0 on ∂Ω1 ∩ ∂Ω
u1 = u2 on Γ
∂u1
∂n

= ∂u2
∂n

on Γ

Lu2 = f in Ω2

u2 = 0 on ∂Ω2 ∩ ∂Ω

, (1.6)

where each n is the outward pointed normal on Γ from Ω1. Here we see that due to
the partition of Ω the original problem (1.5) is replaced by two subproblems on each
subdomain by imposing both Neumann and Dirichlet conditions on Γ. These condi-
tions transmit information from one domain patch to the other and therefore they
are called transmission conditions. The equivalence between the Poisson problem
(1.5) and the multi-domain problem (1.6) is in general not obvious, but can be shown
under suitable regularity assumptions on f , typically f ∈ L2(Ω), by considering the
associated variational formulation.

Iterative Methods

We will now focus on solving the multi-domain problem (1.6) by iterative methods.
These methods typically introduce a sequence of subproblems on Ω1 and Ω2 for which
Dirichlet or Neumann conditions at the internal boundary are provided, which play
the role of the transmission conditions.

12 Chapter 1: Introduction

The Dirichlet-Neumann method For a given λ(0), solve for each k ≥ 0






Lu(k+1)
1 = f in Ω1

u
(k+1)
1 = 0 on ∂Ω1 \ Γ
u
(k+1)
1 = λ(k) on Γ

and







Lu(k+1)
2 = f in Ω2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ
∂u

(k+1)
2

∂n
=

∂u
(k+1)
1

∂n
on Γ

(1.7)

with
λ(k+1) := θu

(k+1)
2|Γ

+ (1− θ)λ(k),

where θ > 0 is an acceleration parameter.
We remark that this method does not necessarily converge, unless assumptions

on the parameter θ or on Ω1 and Ω2 are made. However, if it is converging, then
the rate of convergence is independent of the mesh size, see [85] for a convergence
proof based on a functional analysis argument for partial differential equations.

The Neumann-Neumann method The Neumann-Neumann method proposed
by Bourgat et al. [11] runs as follows: initialize λ(0) and solve for each k ≥ 0






Lu(k+1)
i = f in Ωi

u
(k+1)
i = 0 on ∂Ω1 \ Γ
u
(k+1)
i = λ(k) on Γ

and







Lψ(k+1)
i = f in Ωi

ψ
(k+1)
i = 0 on ∂Ω2 \ Γ

∂ψ
(k+1)
i

∂n
=

∂u
(k+1)
1

∂n
− ∂u

(k+1)
2

∂n
on Γ

(1.8)

for i = 1, 2, with
λ(k+1) := λ(k) − θ(σ1ψ

(k+1)
1|Γ

− σ2ψ
(k+1)
2|Γ

),

where θ > 0 is an acceleration parameter and σ1, σ2 > 0 are averaging coefficients
[100]. This method is ensured to converge and additionally in the case of a finite
element discretization the rate of convergence is independent of the mesh size.

The Robin method Given u
(0)
2 , then solve for k ≥ 0







Lu(k+1)
1 = f in Ω1

u
(k+1)
1 = 0 on ∂Ω1 \ Γ
∂u

(k+1)
1

∂n
+ γ1u

(k+1)
1 =

∂u
(k)
2

∂n
+ γ1u

(k)
2 on Γ

and







Lu(k+1)
2 = f in Ω2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ
∂u

(k+1)
2

∂n
− γ2u

(k+1)
2 =

∂u
(k+1)
1

∂n
− γ2u

(k+1)
1 on Γ,

(1.9)

where γ1 and γ2 are non-negative acceleration parameters satisfying γ1+γ2 > 0. The
Robin method is ensured to converge [79], while we do not have any information
about the rate of convergence nor estimates of the error reduction factor at each
iteration.

1.2 Basic Idea of Subspace Correction and Domain Decomposition 13

The Method by Agoshkov and Lebedev The following non-overlapping do-
main decomposition algorithm was proposed by Agoshkov and Lebedev [1]: given

u
(0)
1 and u

(0)
2 , for each k ≥ 0 we have to solve







Lu(k+1/2)
1 = f in Ω1

u
(k+1/2)
1 = 0 on ∂Ω1 \ Γ
∂u

(k+1/2)
1

∂n
+ pku

(k+1/2)
1 =

∂u
(k)
2

∂n
+ pku

(k)
2 on Γ

u
(k+1)
1 = u

(k)
1 + αk+1(u

(k+1/2)
1 − u

(k)
1) in Ω1

and







Lu(k+1)
2 = f in Ω2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ

−qk∂u
(k+1/2)
2

∂n
+ u

(k+1/2)
2 = −qk ∂u

(k+1)
1

∂n
+ u

(k+1)
1 on Γ

u
(k+1)
2 = u

(k)
2 + βk+1(u

(k+1/2)
2 − u

(k)
1) in Ω2,

(1.10)

where pk, qk ≥ 0 and αk+1, βk+1 ∈ R are free parameters. This algorithm is a
generalization of many other methods, as the already mentioned Robin method (1.9),
which is obtained by setting pk = γ1, qk = 1/γ2 and αk = βk = 1 in (1.10). Similarly,
one can also obtain the Dirichlet-Neumann method (1.7) by taking pk = qk = 0,
αk = βk = 1, and by noting that the roles of Ω1 and Ω2 are reversed.

Parallelism The Agoshkov-Lebedev method (1.10) and therefore also its special
cases (1.7) and (1.9) are generating at each step two boundary value problems, the
first in Ω1 and the latter in Ω2, to be solved sequentially. A simple modification
frees these two subproblems from each other, which makes it more interesting in
view of a parallel implementation. More precisely, when solving the boundary value
problem in Ω2 at the iteration step k + 1, it is indeed enough to use u

(k)
1 instead of

u
(k+1)
1 . For example, in the Dirichlet-Neumann method (1.7) we simply replace the

Neumann conditions on Γ by the new ones

∂u
(k+1)
2

∂n
=
∂u

(k)
1

∂n
on Γ.

1.2.2 Overlapping Domain Decomposition

In this section we describe the so-calledmultiplicative and additive Schwarz methods.
Let us decompose the domain Ω ⊂ R

2 into two overlapping subdomains Ω1 and Ω2

such that Ω1 ∩ Ω2 6= ∅ and Ω = Ω1 ∪ Ω2, cf. Figure 1.6. Further we denote
Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω2 ∩ Ω1 the interior boundaries of the subdomains.

14 Chapter 1: Introduction

Ω1
Ω2

Γ1

Γ2

Figure 1.6: Overlapping decomposition into two domains.

Multiplicative Schwarz Method

The multiplicative Schwarz method starts with an initial value u(0) defined in Ω and
vanishing on ∂Ω and computes a sequence of approximate solutions u(1), u(2), . . . by
solving







Lu(k+1)
1 = f in Ω1

u
(k+1)
1 = u

(k)
|Γ1

on Γ1

u
(k+1)
1 = 0 on ∂Ω1 \ Γ1

and







Lu(k+1)
2 = f in Ω2

u
(k+1)
2 = u

(k+1)
1|Γ2

on Γ2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ2

. (1.11)

The next approximate u(k+1) is then defined by

u(k+1)(x) =

{

u
(k+1)
2 (x) if x ∈ Ω2

u
(k+1)
1 (x) if x ∈ Ω \ Ω2

.

It can be shown that the multiplicative Schwarz method (1.11) converges to a
solution of problem (1.5), see [77, 78] and for a variational based proof consult [100].
In particular, there exist constants c1, c2 ∈ (0, 1), which depend only on (Ω1,Γ2) and
(Ω2,Γ1) respectively, such that for all k ≥ 0

‖u|Ω1
− u

(k+1)
1 ‖L∞(Ω1) ≤ ck1c

k
2‖u− u(0)‖L∞(Γ1)

‖u|Ω2
− u

(k+1)
2 ‖L∞(Ω2) ≤ ck+1

1 ck2‖u− u(0)‖L∞(Γ2).

Note that the constants c1, c2 depend on the size of the overlap and they can be
quite close to one if the overlapping region is thin [78].

Variational formulation Set (w, v) :=
∫

Ω
wv, a(w, v) := (Lw, v), and H1

0 (Ωi) :=

{v ∈ H1
0 (Ω) : v = 0 in Ω \ Ωi} as closed subspaces of H1

0 (Ω) by extending their
elements on Ω by 0. Moreover we define the energy

J(w, u) :=
1

2
a(w,w)− (f, w) + a(u, w). (1.12)

1.2 Basic Idea of Subspace Correction and Domain Decomposition 15

Let us rewrite (1.11) in the following form

{
L(u(k+1/2) − u(k)) = f − Lu(k) in Ω1

u(k+1/2) − u(k) ∈ H1
0 (Ω1)

and
{

L(u(k+1) − u(k+1/2)) = f − Lu(k+1/2) in Ω2

u(k+1) − u(k+1/2) ∈ H1
0 (Ω2).

The variational formulation of method (1.11) reads as follows: initialize u(0) ∈ H1
0 (Ω)

and for k ≥ 0 solve







w
(k)
1 ∈ H1

0 (Ω1) : a(w
(k)
1 , v1) = (f, v1)− a(u(k), v1) for all v1 ∈ H1

0 (Ω1)

u(k+1/2) = u(k) + w
(k)
1

w
(k)
2 ∈ H1

0 (Ω2) : a(w
(k)
2 , v2) = (f, v2)− a(u(k+1/2), v2) for all v2 ∈ H1

0 (Ω2)

u(k+1) = u(k+1/2) + w
(k)
2

(1.13)
or equivalently







w
(k)
1 = argminw1∈H1

0 (Ω1) J(w1, u
(k))

u(k+1/2) = u(k) + w
(k)
1

w
(k)
2 = argminw2∈H1

0 (Ω2) J(w2, u
(k+1/2))

u(k+1) = u(k+1/2) + w
(k)
2 .

(1.14)

From (1.13) we have

a(u(k+1/2) − u(k), v1) = a(u− u(k), v1), u(k+1/2) − u(k) ∈ H1
0 (Ω1)

a(u(k+1) − u(k+1/2), v1) = a(u− u(k+1/2), v1), u(k+1) − u(k+1/2) ∈ H1
0 (Ω2),

which means

u(k+1/2) − u(k) = P1(u− u(k)) for all k ≥ 0

u(k+1) − u(k+1/2) = P2(u− u(k+1/2)) for all k ≥ 0

or equivalently

u− u(k+1/2) = (I − P1)(u− u(k)) for all k ≥ 0

u− u(k+1) = (I − P2)(u− u(k+1/2)) for all k ≥ 0,

where Pi : H
1
0 (Ω) → H1

0 (Ωi) are orthogonal projections. From the latter immediately
follows the error recursion formula

u−u(k+1) = (I−P2)(u−u(k+1/2)) = (I−P2)(I−P1)(u−u(k)) for all k ≥ 0. (1.15)

16 Chapter 1: Introduction

Additive Schwarz Method

If we make the two steps (1.11) independent from each other, then we obtain the ad-
ditive alternating Schwarz method, which computes the sequence of approximations
by solving







Lu(k+1)
1 = f in Ω1

u
(k+1)
1 = u

(k)
|Γ1

on Γ1

u
(k+1)
1 = 0 on ∂Ω1 \ Γ1

and







Lu(k+1)
2 = f in Ω2

u
(k+1)
2 = u

(k)
|Γ2

on Γ2

u
(k+1)
2 = 0 on ∂Ω2 \ Γ2

. (1.16)

The next update u(k+1) is then defined by

u(k+1)(x) =







u
(k+1)
1 (x) x ∈ Ω \ Ω2

u
(k+1)
1 (x) + u

(k+1)
2 (x)− u(k)(x) x ∈ Ω1 ∩ Ω2

u
(k+1)
2 (x) x ∈ Ω \ Ω1

. (1.17)

Variational Formulation The variational formulation of method (1.16) reads as







w
(k)
1 ∈ H1

0 (Ω1) : a(w
(k)
1 , v1) = (f, v1)− a(u(k), v1) for all v1 ∈ H1

0 (Ω1)

w
(k)
2 ∈ H1

0 (Ω2) : a(w
(k)
2 , v2) = (f, v2)− a(u(k), v2) for all v2 ∈ H1

0 (Ω2)

u(k+1) = u(k) + w
(k)
1 + w

(k)
2

(1.18)

or 





w
(k)
1 = argminw1∈H1

0 (Ω1) J(w1, u
(k))

w
(k)
2 = argminw2∈H1

0 (Ω2) J(w2, u
(k))

u(k+1) = u(k) + w
(k)
1 + w

(k)
2

, (1.19)

where J(w, u) = 1
2
a(w,w) − (f, w) + a(u, w). By relation (1.17) we verify that the

original formulation (1.16) is equivalent to the variational formulation. Moreover
from (1.18) we have that

a(w
(k)
1 , v1) = a(u

(k+1)
1 − u(k), v1) = a(u− u(k), v1)

a(w
(k)
2 , v2) = a(u

(k+1)
2 − u(k), v2) = a(u− u(k), v2)

and hence we deduce

u
(k+1)
1 − u(k) = P1(u− u(k)) for all k ≥ 0

u
(k+1)
2 − u(k) = P2(u− u(k)) for all k ≥ 0

or equivalently

u− u
(k+1)
1 = (I − P1)(u− u(k)) for all k ≥ 0

u− u
(k+1)
2 = (I − P2)(u− u(k)) for all k ≥ 0.

1.3 Subspace Correction for ℓ1-norm Minimization 17

Then by using the update (1.17) we get the following error recursion formula:

u−u(k+1) = u−u(k+1)
1 −u(k+1)

2 −u(k) = (I−P1−P2)(u−u(k)) for all k ≥ 0. (1.20)

Inspired by the variational formulation (1.14) and (1.19) of the multiplicative
and additive Schwarz method, in [61] a minimization of a functional formed by a
discrepancy term with respect to the data and by a ℓ1-norm constraint by means of
subspace correction is proposed. That is, the functional is minimized by alternately
minimizing local problems that are restricted to suitable subspaces. We note that
this problem is non-smooth, since a ℓ1-term is present, but additive with respect
to the proposed splitting and therefore can be included in the class of problems
discussed in [21]. We recall this approach since it serves us as a model for subspace
correction methods for non-differentiable problems.

1.3 Subspace Correction for ℓ1-norm Minimiza-

tion

The minimization of the ℓ1-norm is well-understood to provide an effective way
for reconstructing sparse signals from linear measurement [62]. It has been shown
that the minimization of the ℓ1-norm is very effective in several applications, such as
compressed sensing [16, 17, 18, 52], image processing, and inverse problems [70, 110].
Let H be a real separable Hilbert space and for a countable index set Λ we define
ℓp(Λ) := {u = (uλ)λ∈Λ : (

∑

λ∈Λ |uλ|p)1/p} for 1 ≤ p < ∞. We are interested in the
numerical minimization in ℓ2(Λ) of the functional

J(u) := ‖Tu− g‖2H + 2α‖u‖ℓ1(Λ), (1.21)

where T : ℓ2(Λ) → H is a bounded linear operator, g ∈ H is a given observed datum,
and α > 0 is a fixed regularization parameter. In order to solve this minimization
problem with respect to u one can take an iterative thresholding algorithm [42]: pick
an initial u(0) ∈ ℓ2(Λ) (u

(0) = 0 is a good choice) and iterate

u(n+1) = Sα(u
(n) + T ∗(g − Tu(n))), n ≥ 0, (1.22)

where T ∗ denotes the adjoint operator of T and Sα : ℓ2(Λ) → ℓ2(Λ), defined compo-
nentwise by Sα(v) = (Sαvλ)λ∈Λ with

Sα(v) =

{

v − sign(v)α if |v| > α

0 otherwise
,

is the so-called soft-thresholding operator. The strong convergence of the algorithm
in (1.22) to minimizers of J is proven in [42]. In [13] it was shown that under
additional conditions on the operator T or on minimizers of (1.21) the algorithm in

18 Chapter 1: Introduction

(1.22) converges linearly, although with a rather poor rate in general, see [62] for
a broader discussion. There exist several alternative approaches, that promise to
solve ℓ1-minimization with fast convergence [44, 58, 74, 8]. One way to accelerate
the speed of convergence of minimizing iterative soft-thresholding algorithms for
large-scale problems was proposed in [61]. There a sequential and parallel domain
decomposition method for ℓ1-norm minimization was introduced and analyzed. We
will explain now in more detail the main idea of this algorithm.

1.3.1 Sequential Algorithm

We decompose the index set Λ into two disjoint sets Λi, i = 1, 2, i.e., Λ = Λ1 ∪ Λ2.
Associated with this decomposition we define Vi = {uΛ ∈ ℓ2(Λ) : supp(uΛ) ⊂ Λi} for
i = 1, 2. Then we minimize J in (1.21) by using the following alternating algorithm:

pick an initial V1 ⊕ V2 ∋ u
(0)
Λ1

+ u
(0)
Λ2

:= u(0), for example, u(0) = 0, and iterate







u
(n+1)
Λ1

≈ argminuΛ1
∈V1 J(uΛ1 + u

(n)
Λ2

)

u
(n+1)
Λ2

≈ argminuΛ2
∈V2 J(u

(n+1)
Λ1

, uΛ2)

u(n+1) := u
(n+1)
Λ1

+ u
(n+1)
Λ2

,

(1.23)

where uΛi is supported on Λi only, i = 1, 2. This algorithm is inspired by (1.14)
and (1.19), but differently from the situations there, the energy (1.21) is now non-
smooth. Nevertheless we observe that the ℓ1-norm splits additively

‖uΛ1 + uΛ2‖ℓ1(Λ) = ‖uΛ1‖ℓ1(Λ1) + ‖uΛ2‖ℓ1(Λ2)

and hence the subproblems in (1.23) are of the same kind as the original problem
(1.21), i.e., for example, for the problem on Λ1 we have

arg min
uΛ1

∈V1
J(uΛ1 + u

(n)
Λ2

) = arg min
uΛ1

∈V1
‖TΛ1uΛ1 − (g − TΛ2u

(n)
Λ2

)‖2L2(Ω) + 2α‖uΛ1‖ℓ1(Λ1),

where TΛi is the restriction of the matrix T to the columns indexed by Λi. Moreover,
this splitting results in a dimension reduction for each subproblem. For solving the
subminimization problems of (1.23) we can use one of the before mentioned methods,
for example, again the iterative thresholding algorithm:

u
(n+1,ℓ+1)
Λi

= Sα(u
(n+1,ℓ)
Λi

+ T ∗
Λi
((g − TΛîu

(n)
Λî

)− TΛiu
(n+1,ℓ)
Λi

)), î ∈ {1, 2} \ {i}. (1.24)

1.3 Subspace Correction for ℓ1-norm Minimization 19

This leads to the following sequential algorithm: pick an initial V1 ⊕ V2 ∋ u
(0,L)
Λ1

+

u
(0,M)
Λ2

:= u(0), for example, u(0) = 0, and iterate













u
(n+1,0)
Λ1

= u
(n,L)
Λ1

u
(n+1,ℓ+1)
Λ1

= Sα

(

u
(n+1,ℓ)
Λ1

+ T ∗
Λ1
((g − TΛ2u

(n,M)
Λ2

)− TΛ1u
(n+1,ℓ)
Λ1

)
)

ℓ = 0, . . . , L− 1






u
(n+1,0)
Λ2

= u
(n,M)
Λ2

u
(n+1,ℓ+1)
Λ2

= Sα

(

u
(n+1,ℓ)
Λ2

+ T ∗
Λ2
((g − TΛ1u

(n+1,L)
Λ1

)− TΛ2u
(n+1,ℓ)
Λ2

)
)

ℓ = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
Λ1

+ u
(n+1,M)
Λ2

.

(1.25)

Note, that we perform only a finite number L andM of inner iterations. However, for
any choice of L and M this algorithm produces a sequence (u(n))n such that J(u(n))
is monotonically decreasing. Moreover, its convergence to a strong minimizer of the
functional (1.21) is proven [61]. Nothing is known about the rate of convergence,
which is still an open problem. However, for instance, Vonesch and Unser [116]
used the algorithm in (1.23) in order to provide some preconditioning effects when
dealing with deblurring problems.

Great advantages of this subspace correction algorithm are that we can solve
instead of one large problem several smaller problems, which might lead to an ac-
celeration of convergence due to preconditioning effects with a reduction of overall
computational cost, and that it can be easily parallelized.

1.3.2 Parallel Algorithm

Algorithm (1.25) can be modified to a parallel version by just substituting u
(n+1,L)
Λ1

by u
(n,L)
Λ1

in the second inner iterations, which makes the subminimization problems
on Λ1 and Λ2 independent from each other. Additionally, in order to guarantee
the monotonicity of the sequence J(u(n)), we need to replace the update u(n+1) :=

u
(n+1,L)
Λ1

+u
(n+1,M)
Λ2

by u(n+1) :=
u
(n+1,L)
Λ1

+u
(n+1,M)
Λ2

+u(n)

2
, which is the average between the

current and the previous iteration. Then we obtain the following parallel algorithm:
pick an initial V1 ⊕ V2 ∋ u

(0,L)
Λ1

+ u
(0,M)
Λ2

:= u(0), for example, u(0) = 0, and iterate













u
(n+1,0)
Λ1

= u
(n,L)
Λ1

u
(n+1,ℓ+1)
Λ1

= Sα

(

u
(n+1,ℓ)
Λ1

+ T ∗
Λ1
((g − TΛ2u

(n,M)
Λ2

)− TΛ1u
(n+1,ℓ)
Λ1

)
)

ℓ = 0, . . . , L− 1






u
(n+1,0)
Λ2

= u
(n,M)
Λ2

u
(n+1,ℓ+1)
Λ2

= Sα

(

u
(n+1,ℓ)
Λ2

+ T ∗
Λ2
((g − TΛ1u

(n,L)
Λ1

)− TΛ2u
(n+1,ℓ)
Λ2

)
)

ℓ = 0, . . . ,M − 1

u(n+1) :=
u
(n+1,L)
Λ1

+u
(n+1,M)
Λ2

+u(n)

2
.

20 Chapter 1: Introduction

The convergence to a strong minimizer of the functional J of the parallel algorithm
is also proven in [61].

1.3.3 Multidomain Splitting

The above described subspace correction algorithm is not restricted to a decomposi-
tion into 2 subspaces, but can be generalized to an algorithm for multiple decompo-
sitions. We split now the index set Λ into multiple disjoint sets Λi, i = 1, 2, . . . ,N ,
such that Λ =

⋃N
i=1 Λi. Associated with this decomposition we define Vi = {uΛ ∈

ℓ2(Λ) : supp(uΛ) ⊂ Λi} for i = 1, 2, . . . ,N . Then we minimize J by using the follow-

ing alternating algorithm: pick an initial V1⊕ . . .⊕VN ∋ u
(0,L)
Λ1

+ . . .+u
(0,LN)
ΛN

:= u(0),

for example, u(0) = 0, and iterate













u
(n+1,0)
Λ1

= u
(n,L1)
Λ1

u
(n+1,ℓ+1)
Λ1

= Sα

(

u
(n+1,ℓ)
Λ1

+ T ∗
Λ1
((g −∑N

i=2 TΛiu
(n,Li)
Λi

)− TΛ1u
(n+1,ℓ)
Λ1

)
)

ℓ = 0, . . . , L1 − 1
. . .






u
(n+1,0)
ΛN

= u
(n,LN)
ΛN

u
(n+1,ℓ+1)
ΛN

= Sα

(

u
(n+1,ℓ)
ΛN

+ T ∗
ΛN

((g −∑N−1
i=1 TΛiu

(n+1,Li)
Λi

)− TΛN
u
(n+1,ℓ)
ΛN

)
)

ℓ = 0, . . . , LN − 1

u(n+1) :=
∑N
i=1 u

(n+1,Li)
Λi

+(N−1)u(n)

N
.

The monotonicity of the energy with respect to the iterations and the convergence
to an expected minimizer is ensured [61].

1.4 On this Work

Motivated by the above mentioned subspace correction method for ℓ1-norm mini-
mization we are interested to extend such a splitting strategy for non-smooth and
non-additive problems. In particular, in this thesis we are concerned with intro-
ducing convergent sequential and parallel subspace correction and domain decom-
position methods for solving functionals of the type (1.4), i.e., formed by an L2-
discrepancy term and a total variation constraint.

Note that in comparison to the ℓ1-norm, the total variation is both non-smooth
and non-additive with respect to a non-overlapping domain decomposition, since
the total variation of a function on the whole domain equals the sum of the total
variation on the subdomains plus the size of the possible jumps at the interfaces, see
formula (2.6). Thus one encounters additional difficulties in showing convergence
of such decomposition strategies to global minimizers. In particular, we stress very
clearly that well-known approaches as in [21, 30, 108, 109] are not directly applicable
to this problem, because they either address additive problems or smooth convex

1.4 On this Work 21

minimizations, which is not the case of total variation minimization. We emphasize
that the successful convergence of such alternating algorithms is far from being
obvious for non-smooth and non-additive problems, as many counterexamples can
be constructed. Moreover, for total variation minimization, the interesting solutions
may be discontinuous, e.g., along curves in 2D. These discontinuities may cross
the interfaces of the domain decomposition patches. Hence, the crucial difficulty
is the correct numerical treatment of interfaces, with the preservation of crossing
discontinuities and the correct matching where the solution is continuous instead.

Contribution of this thesis

This thesis is putting together the contributions of the papers [63, 64, 75, 76] which
we distribute into the following two chapters:

Chapter 3 The work [66] was generally addressed to abstract subspace correc-
tion methods for the minimization of functionals formed by a discrepancy term and
a non-smooth and non-additive constraint. An implementation of this algorithm
is suggested that is guaranteed to converge and to decrease the objective energy
J monotonically. The convergence to minimizers of J could be only proven under
technical conditions on the interface of the subdomains, which are in general not ful-
filled. In fact we will state a simple counterexample in 2-dimensions taken from [118],
where we show that for a non-smooth and non-additive energy a subspace correction
method does not necessarily converge to the right minimal solution. Additionally
and as the first original result we show a more sophisticated counterexample with
respect to the total variation minimization as described below.

Inspired by the work of Vonesch and Unser [116], we adapt and specify the
subspace correction algorithm from [66] to the case of an orthogonal wavelet space
decomposition and for deblurring problems. We show additional properties of the
limit of the sequence produced by the subspace correction algorithm for L2/TV -
minimization problems and obtain an additional condition under which the obtained
limit is indeed the expected minimizer. Nevertheless, this condition cannot be en-
sured to hold always. In particular we are able to construct a counterexample,
which shows that in general we cannot expect convergence of the algorithm to a
minimizer of the objective functional. Despite this quite special negative result, we
show in this chapter that an orthogonal wavelet space decomposition for deblurring
problems works in practice very efficiently. With the help of the newly obtained
condition of convergence, we are indeed able to show in our numerical examples
that the sequence produced by this algorithm in fact numerically converges to the
expected minimizer.

Chapter 4 As the second relevant result of the thesis, despite the partially nega-
tive results provided by our counterexamples of Chapter 3, we prove that appropri-
ate domain decomposition algorithms for total variation minimization do converge

22 Chapter 1: Introduction

to minimizers of J . We introduce overlapping domain decomposition algorithms
for total variation minimization that eventually provides us with a framework in
which we are able to prove successfully its convergence to minimizers of J , both
in its sequential and parallel form. Further the subspace correction algorithm of
[66] (also presented in the Chapter 3), can be particularly modified to work for a
non-overlapping domain decomposition for the minimization of the total variation.
In a very general framework it was not possible to show that the algorithm is indeed
converging to the expected minimizer. However the numerical results seemed very
promising and converging to the right solution. We close this gap between the theo-
retical analysis and the numerical experiments by proving that in a discrete setting
the proposed algorithm always converges to a minimizer of the discretized func-
tional. Finally let us stress that these are the first methods that address a domain
decomposition strategy for total variation minimization with a formal theoretical
justification of convergence.

In both the non-overlapping and the overlapping algorithm we have to solve
constrained minimization problems on each subdomain. We suggest to minimize
these subproblems either by the so-called iterative oblique thresholding algorithm
from [66] or by the Bregmanized Operator Splitting - Split Bregman algorithm,
which combines the recently introduced Bregmanized Operator Splitting and the
Split Bregman method. We compare both approaches with respect to computational
time and efficiency for the example of the non-overlapping domain decomposition
method for total variation minimization.

Chapter 2

Preliminaries

In this chapter we introduce basic concepts of convex analysis and functions of
bounded variations, which will be useful to us in the sequel.

2.1 Convex Functions

Definition 2.1.1. Let V be a vector space over R.

(a) The domain of a function F : V → R̄ = R ∪ {−∞,+∞} is defined as the set

Dom(F) = {v ∈ V : F (v) 6= ∞}.

(b) A set U ⊂ V is said to be convex if, for all u, v ∈ U and all λ ∈ [0, 1] we have
that

λu+ (1− λ)v ∈ U.

(c) Additionally let U ⊂ V a convex space and F : U → R̄. Then F is said to be
convex if for every u, v ∈ U

F (λu+ (1− λ)v) ≤ λF (u) + (1− λ)F (v)

for all λ ∈ [0, 1], whenever the right-hand side is defined.

(d) A function F : V → R is said to be sublinear if for all u, v ∈ V

F (u+ v) ≤ F (u) + F (v).

(e) We say that a function F : V → R is 1-homogeneous if for all u ∈ V and
λ ∈ R

F (λu) = |λ|F (u).

23

24 Chapter 2: Preliminaries

A convex function F : V → R̄ is called proper, if Dom(F) 6= ∅ and F (u) > −∞
for all u ∈ V . We recall that a topological vector space is a vector space V endowed
with a topology such that the maps (u, v) 7→ u+ v of V ×V into V and (λ, u) 7→ λu
of R×V into V are continuous. Moreover a topological vector space is called locally
convex if the origin possesses a fundamental system of convex neighborhoods.

Definition 2.1.2. Let V be a locally convex space. A function F : V → R̄ is called
lower semicontinuous (l.s.c.) on V if for every convergent sequence u(n) → û we
have

lim inf
u(n)→û

F (u(n)) ≥ F (û).

2.2 Duality in Convex Optimization

2.2.1 Conjugate Functions

In this section we recall duality results in convex analysis, see for example [53, 101].
Henceforth we let V and V ∗ be two vector spaces placed in the duality by a bilinear
pairing denoted by 〈·, ·〉. We would like to start by recalling a useful result.

Proposition 2.2.1. Let F : V → R̄, then the following properties are equivalent:

(i) F is the pointwise supremum of a family of continuous affine functions;

(ii) F is a convex l.s.c. function from V into R̄, and if F takes the value −∞ then
F is identically equal to −∞.

Let us introduce the definition of the conjugate (or Legendre transform) of a
function.

Definition 2.2.2. Let F : V → R̄ be a function. The conjugate function (or
Legendre transform) F ∗ : V ∗ → R is defined by

F ∗(u∗) = sup
u∈V

{〈u, u∗〉 − F (u)}. (2.1)

From this definition we see that F ∗ is the pointwise supremum of continuous
affine functions and thus, according to Proposition 2.2.1, convex and lower semicon-
tinous. The conjugate function F ∗ is additionally proper if and only if F is proper.
We can repeat the process in (2.1), which leads to the biconjugate of a function.

Definition 2.2.3. Let F ∗ be the conjugate function of F : V → R̄. Then the
function F ∗∗ : V → R̄ defined by

F ∗∗(u) = sup
u∗∈V ∗

{〈u, u∗〉 − F ∗(u∗)}

is called the biconjugate of F .

2.2 Duality in Convex Optimization 25

We have the following properties

Proposition 2.2.4. Let F : V → R̄, then we observe the following properties:

(i) F ∗∗ ≤ F and if F is convex, proper, and l.s.c., then F ∗∗ = F ,

(ii) F ∗∗∗ = F ∗.

2.2.2 Computation of Conjugate Functions

Let us denote by ‖ · ‖ the norm of V and by ‖ · ‖∗ the norm of V ∗. Now we will give
two examples of computing the conjugate function of given convex functions.

Example 1: Let us compute the conjugate function of the convex function F1 :
V → R that is defined by F1(u) = ‖u− g‖2, where g ∈ V is fixed. From Definition
2.2.2 we have

F ∗
1 (u

∗) = sup
u∈V

{〈u, u∗〉 − F1(u)} = sup
u∈V

{〈u, u∗〉 − 〈u− g, u− g〉}.

We set G(u) := 〈u, u∗〉 − 〈u− g, u− g〉. To get the maximum of G we compute the
Gâteaux-differential (see Definition 2.3.1) at u of G,

G′(w0) = u∗ − 2(u− g) = 0

and we set it to zero G′(u) = 0, since G′′(u) < 0, and we get u = u∗

2
+ g, being the

maximizer of G. Thus we have that

F ∗
1 (u

∗) = sup
u∈V

G(u) =

〈
u∗

4
+ g, u∗

〉

.

Example 2: Now we are going to compute the conjugate function of F2 : V → R

that is defined by F2(u) = 2αϕ(‖u‖), where ϕ : R → R is a convex function and
α > 0. From Definition 2.2.2 we have

F ∗
2 (u

∗) = sup
u∈V

{〈u, u∗〉 − 2αϕ(‖u‖)}

= sup
t≥0

sup
u∈V
‖u‖=t

{〈u, u∗〉 − 2αϕ(‖u‖)}

= sup
t≥0

{t‖u∗‖∗ − 2αϕ(t)}.

If ϕ were an even function, i.e., ϕ(t) = ϕ(−t) for all t ∈ Dom(ϕ), then

sup
t≥0

{t‖u∗‖∗ − 2αϕ(t)} = sup
t∈R

{t‖u∗‖∗ − 2αϕ(t)}

= 2α sup
t∈R

{
t‖u∗‖∗
2α

− ϕ(t)

}

= 2αϕ∗

(‖u∗‖∗
2α

)

,

26 Chapter 2: Preliminaries

where ϕ∗ is the conjugate function of ϕ.
Unfortunately ϕ is not even in general. To overcome this difficulty we have to

choose a function which is equal to ϕ(s) for s ≥ 0 and does not change the supremum
for s < 0. For instance, one can choose ϕ1(s) = ϕ(|s|) for s ∈ R. Then we have

sup
t≥0

{t‖u∗‖∗ − 2αϕ(t)} = sup
t∈R

{t‖u∗‖∗ − 2αϕ1(t)}

= 2α sup
t∈R

{

t
‖u∗‖∗
2α

− ϕ1(t)

}

= 2αϕ∗
1

(‖u∗‖∗
2α

)

,

where ϕ∗
1 is the conjugate function of ϕ1. Note that one can also choose ϕ1(s) = ϕ(s)

for s ≥ 0 and ϕ1(s) = +∞ for s < 0.

2.2.3 The Dual Problem

Let F : V → R̄ be a function. We are now interested in the minimization of the
problem

inf
u∈V

F (u). (P)

We call problem (P) the primal problem and it is said to be non-trivial if there
exists u0 ∈ V such that

F (u0) < +∞.

The infimum in (P) is denoted by inf(P). Let us introduce two other topological
vector spaces Y and Y ∗ placed in the duality by a bilinear pairing 〈·, ·〉. We will
denote the pairing between V and V ∗ as well as the pairing between Y and Y ∗ by
〈·, ·〉, since there is in general no possibility of ambiguity. Now consider a function
φ : V × Y → R̄ such that

φ(u, 0) = F (u)

and for every p ∈ Y we consider the minimization problem

inf
u∈V

φ(u, p).

Obviously for p = 0 the latter problem is the same as (P).
We define now the dual problem of (P): let φ∗ : V ∗ × Y ∗ → R̄ be the conju-

gate function of φ in the duality between V × Y and V ∗ × Y ∗, i.e., φ∗(u∗, p∗) =
supu∈V,p∈Y {〈u∗, u〉+ 〈p∗, p〉 − φ(u, p)}. Then we call

sup{−φ∗(0, p∗)} (P∗)

the dual problem of (P) with respect to φ (or with respect to the given perturbation
p). We denote the supremum of (P∗) by sup(P∗).

2.2 Duality in Convex Optimization 27

An Important Special Case

Assume T : V → Y is a continuous linear operator with adjoint T ∗ : Y ∗ → V ∗ and
the function to be minimized can be written as

F (u) = G(u, Tu),

where G is a function of V ×Y into R̄. Then the primal problem (P) takes the form

inf
u∈V

G(u, Tu). (2.2)

In this case we write the function φ as

φ(u, p) = G(u, Tu− p).

Now let us determine the dual problem of (2.2): we have

φ∗(0, p∗) = sup
u∈V,p∈Y

{〈p∗, p〉 −G(u, Tu− p)}

= sup
u∈V

sup
p∈Y

{〈p∗, p〉 −G(u, Tu− p)}.

For a fixed u ∈ V , we substitute q = Tu− p and obtain

φ∗(0, p∗) = sup
u∈V

sup
q∈Y

{〈p∗, Tu〉 − 〈p∗, q〉 −G(u, q)}

= sup
u∈V,q∈Y

{〈T ∗p∗, u〉 − 〈p∗, q〉 −G(u, q)} = G∗(T ∗p∗,−p∗),

where G∗ denoted the conjugate function of G. Thus the dual problem reads as

sup
p∗∈Y ∗

{−G∗(T ∗p∗,−p∗)}.

Theorem 2.2.5. Let us as assume that G is convex, that inf(P) is finite, and that
there exists u0 ∈ V such that G(u0, Tu0) < +∞ and the function p 7→ G(u0, p) is
continuous at Tu0. Then problem (2.2) is stable:

inf (P) = sup (P∗),

and (P∗) has at least one solution p̄∗.

If the function G can be additionally decomposed into the form

G(u, Tu) = G1(u) +G2(Tu),

with G1 : V → R̄ and G2 : Y → R̄, then the problem (P) can be written as

inf
u∈V

{G1(u) +G2(Tu)}.

It is easy to verify that the dual problem is given by

sup
p∗∈Y ∗

{−G∗
1(T

∗p∗)−G∗
2(−p∗)},

where G∗
1 : V ∗ → R̄ and G2 : Y ∗ → R̄ are the conjugate functions of G1 and G2

respectively.

28 Chapter 2: Preliminaries

2.3 Subdifferentiability

In this section we extracted results from [53].

Definition 2.3.1. Let V be a locally convex space and let F be a function of V into
R̄. The directional derivative of F at u ∈ V in the direction v ∈ V is defined as the
limit, if it exists,

F ′(u; v) = lim
λ→0+

F (u+ λv)− F (u)

λ
.

We say that F is Gâteaux-differentiable at u ∈ V , and is denoted F ′(u) ∈ V ∗, if
the above limit exists for every v ∈ V and

F ′(u, v) = 〈v, F ′(u)〉.
There exists functions in which the above limit does not exist, which means

that these functions are not differentiable. For such functions we introduce a more
general concept of differentiability, called subdifferentiability.

Definition 2.3.2. Let V be a locally convex space, V ∗ its topological dual, 〈·, ·〉 the
bilinear canonical pairing over V × V ∗, and F : V → R̄. The subdifferential of F
at u ∈ V is defined as the set valued function

∂F (u) :=

{

∅ if F (u) = ∞
{u∗ ∈ V ∗ : 〈u∗, v − u〉+ F (u) ≤ F (v) for all v ∈ V } otherwise

.

It is obvious from this definition that 0 ∈ ∂F (u) if and only if u is a minimizer
of F . Since we deal with several spaces it will turn out to be useful to distinguish
sometimes in which space the subdifferential is defined by imposing a subscript ∂V F
for the subdifferential considered on the space V .

Proposition 2.3.3. For every function F : V → R̄ we have

u∗ ∈ ∂F (u) ⇒ u ∈ ∂F ∗(u∗).

If, further, F is convex, l.s.c., and proper, we have

u∗ ∈ ∂F (u) ⇐⇒ v ∈ ∂F ∗(u∗). (2.3)

2.3.1 Subdifferential Calculus

Let V be a locally convex space, F : V → R̄, and λ > 0. At every point u ∈ V , we
have

∂(λF)(u) = λ∂F (u).

Moreover, let F1, F2 : V → R. At every point u ∈ V , we have

∂(F1 + F2)(u) ⊃ ∂F1(u) + ∂F2(u).

Having an equality in the latter relation is far from being always fulfilled. However,
there is a simple case where it holds:

2.4 Basic Definitions on Measures 29

Proposition 2.3.4. Let F1 and F2 be convex, l.s.c., and proper. If there exists a
point ū ∈ DomF1 ∩DomF2 where F1 is continuous, then we have for all u ∈ V

∂(F1 + F2)(u) = ∂F1(u) + ∂F2(u).

Let us consider now the subdifferential of a composite function.

Proposition 2.3.5. Let V and Y be two locally convex sets with topological duals
V ∗ and Y ∗, T : V → Y with adjoint T ∗, F : Y → R a convex, l.s.c., and proper
function, and F ◦ T : V → R also a convex, l.s.c., and proper function. If there is
a point T ū, for ū ∈ V , where F is continuous and finite, then for all points u ∈ V ,
we have

∂(F ◦ T)(u) = T ∗∂F (Tu).

2.4 Basic Definitions on Measures

The following concepts and results are from [2, 60].

Definition 2.4.1. Let X be a nonempty set and let E be a collection of subsets of
X.

(a) We say that E is an algebra if ∅ ∈ E , E1 ∪E2 ∈ E , and X \E1 ∈ E whenever
E1, E2 ∈ E .

(b) We say that an algebra E is a σ-algebra if for any sequence (Eh) ⊂ E its union
⋃

hEh belongs to E .

(c) For any collection G of subsets of X, the σ-algebra generated by G is the
smallest σ-algebra containing G. If (X, τ) is a topological space, we denote by
B(X) the σ-algebra of Borel subsets of X, i.e., the σ-algebra generated by the
open subsets of X.

(d) If E is a σ-algebra in X, then we call the pair (X, E) a measure space.

Let us define a positive measure.

Definition 2.4.2. Let (X, E) be a measure space and µ : E → [0,+∞]. We say that
µ is a positive measure if µ(∅) = 0 and µ is σ-additive on E , i.e., for any sequences
(Eh) of pairwise disjoint elements of E

µ

(
∞⋃

h=0

Eh

)

=
∞∑

h=0

µ(Eh).

We say that µ is finite if µ(X) < +∞.

We now give the definition of real and vector measures.

30 Chapter 2: Preliminaries

Definition 2.4.3. Let (X, E) be a measure space and let m ∈ N, m ≥ 1. We say
that µ : E → R

m is a measure if µ(∅) = 0 and for any sequence (Eh) of pairwise
disjoint elements of E

µ

(
∞⋃

h=0

Eh

)

=
∞∑

h=0

(Eh).

If m = 1 we say that µ is a real measure, if m > 1 we say that µ is a vector
measure.

A topological space X is called compact if every open cover of X has a finite
subcover, i.e., for every collection {Uα}α∈Λ of open subsets of X such that X =
⋃

α∈Λ Uα there is a finite subset Λ̃ of Λ such that X =
⋃

α∈Λ̃ Uα. Moreover, if every
point of X has a compact neighborhood, then we call X locally compact. We say
X is sequentially compact if every sequence in X has a convergent subsequence. A
topological space X is called separable if it has a countable dense subset, i.e., there
is a subset E ⊂ X such that card(E) ≤ card(N) and clE = X, where card(E)
denotes the cardinality of the set E and clE is the closure of E.

Definition 2.4.4. Let X be a locally compact and separable metric space, B(X) its
Borel σ-algebra, and consider the measure space (X,B(X)). A (real or vector) set
function defined on the relatively compact Borel subsets of X that is a measure on
(K,B(K)) for every compact set K ⊂ X is called a (real or vector) Radon measure
on X.

Definition 2.4.5. Let k ∈ [0,+∞], Λ any index set, and E ⊂ R
N for N ∈ N. The

k-dimensional Hausdorff measure of E is given by

Hk(E) := lim
δ→0

Hk,δ(E),

where for 0 < δ ≤ +∞, Hk,δ(E) is defined by

Hk,δ(E) :=
ωk
2k

inf

{
∑

i∈Λ

| diam(Ei)|k, diam(Ei) < δ,E =
⋃

i∈Λ

Ei

}

for finite or countable covers (Ei)i∈Λ, where we denoted the diameter of the set Ei by
diam(Ei). The normalization factor ωk = πk/2Γ(1+k/2), where Γ(t) =

∫∞

0
st−1e−sds

is the Gamma function.
The Hausdorff dimension of E is defined by

H− dim(E) := inf{k ≥ 0 : Hk(E) = 0}.

2.5 Distributional Derivative

In the sequel let Ω ⊂ R
N , N ≥ 1, be an open set. We define by C∞

c (Ω) the set of all
C∞-functions whose support is compact and contained in Ω. A distribution on Ω is
a continuous linear functional on C∞

c (Ω). We denote the space of all distributions
on Ω by D′(Ω).

2.6 Functions of Bounded Variation 31

Definition 2.5.1. For F ∈ D′(Ω) and for any multi-index β we define the distri-
butional derivative ∂βF ∈ D′(Ω) by

〈∂βF, φ〉D′×C∞
c

= (−1)|β|〈F, ∂βφ〉D′×C∞
c

for all φ ∈ C∞
c (Ω),

where 〈·, ·〉D′×C∞
c

denotes the pairing between D′(Ω) and C∞
c (Ω).

For more details we refer to [60].

2.6 Functions of Bounded Variation

In image processing one is interested to recover and to preserve discontinuities in im-
ages. Using classical Sobolev spaces, asW 1,1 (the Sobolev space of L1-functions with
L1-distributional derivatives), does not allow to take such phenomena into account,
since the gradient of a Sobolev function is again a function. If u is discontinuous,
then its gradient has to be understood as a measure. Therefore we introduce the
space of bounded variation functions, which is adapted to this situation.

Definition 2.6.1. Let u ∈ L1(Ω), then u is a function of bounded variation in Ω
if the distributional derivative of u is representable by a finite Radon measure in Ω,
i.e., if ∫

Ω

u
∂φ

∂xi
dx = −

∫

Ω

φdDiu for all φ ∈ C∞
c (Ω), i = 1, . . . , N

for some R
N -valued measure Du = (D1u, . . . , DNu) in Ω. The vector space of all

functions of bounded variation in Ω is denoted by BV (Ω).

The variation of a function is defined as follows:

Definition 2.6.2. For u ∈ L1
loc(Ω), the variation of u in Ω is defined by

V (u,Ω) := sup

{∫

Ω

u divϕ dx : ϕ ∈
[
C1
c (Ω)

]N
, ‖ϕ‖∞ ≤ 1

}

.

A simple integration by parts proves that V (u,Ω) =
∫

Ω
|∇u|dx if u ∈ C1(Ω) and

in fact also if u ∈ W 1,1(Ω). Let us recall the definition of the total variation of a
measure:

Definition 2.6.3. Let X be a nonempty set and E be a σ-algebra on X. If µ is a
measure, then its total variation |µ| for every E ∈ E is defined as

|µ|(E) := sup

{
∞∑

h=0

|µ(Eh)| : Eh ∈ E pairwise disjoint, E =
∞⋃

h=0

Eh

}

.

The space of bounded variation functions can be characterized by the total vari-
ation |Du|(Ω). By this definition we can characterize the space of bounded variation
functions by the total variation |Du|(Ω) in the following way:

32 Chapter 2: Preliminaries

Proposition 2.6.4. Let u ∈ L1
loc(Ω). Then, u belongs to BV (Ω) if and only if

V (u,Ω) <∞. In addition, V (u,Ω) coincides with |Du|(Ω) for any u ∈ BV (Ω) and
u 7→ |Du|(Ω) is l.s.c. in BV (Ω) with respect to the L1

loc(Ω) topology.

The space BV (Ω) endowed with the norm

‖u‖BV :=

∫

Ω

|u|dx+ |Du|(Ω) (2.4)

is a Banach space. Moreover we have the following useful result.

Theorem 2.6.5. Let u ∈ L1(Ω). Then u ∈ BV (Ω) if and only if there exists a
sequence (vn)n ⊂ C∞(Ω) converging to u in L1(Ω) and satisfying

C := lim
n→+∞

∫

Ω

|∇vn|dx <∞. (2.5)

Moreover, the least constant C in (2.5) is |Du|(Ω).
Definition 2.6.6. Let u, uh ∈ BV (Ω). We say that (un)n weakly-∗-converges in
BV (Ω) to u if (un)n converges to u in L1(Ω) and (Dun)n weakly-∗-converges to Du
in Ω, i.e.,

lim
n→+∞

∫

Ω

φdDun =

∫

Ω

φdDu for all φ ∈ C0(Ω).

A simple criterion for weak-∗-convergence is stated in the following result:

Proposition 2.6.7. Let (un)n ⊂ BV (Ω). Then (un)n weakly-∗-converges to u in
BV (Ω) if and only if (un)n is bounded in BV (Ω) and converges to u in L1(Ω).

For BV functions the following useful compactness theorem can be stated:

Theorem 2.6.8. Every sequence (un)n ⊂ BV (Ω) satisfying

sup

{∫

E

|un|dx+ |Dun|(E) : n ∈ N

}

<∞ for all E ⊂⊂ Ω open

admits a subsequence (un(k))k converging in L
1
loc(Ω) to u ∈ BV (Ω). If Ω is a bounded

extension domain and the sequence is bounded in BV (Ω), then we can say that
u ∈ BV (Ω) and that the subsequence weakly-∗-converges to u.

Let Ω1 ∪ Ω2 ⊂ Ω ⊂ Ω̄1 ∪ Ω̄2 be a disjoint decomposition of Ω. Moreover we
denote by uΩ1 the restriction of u to Ω1. Then the total variation has the following
splitting property, cf. [2, Theorem 3.84, p 177],

|D(uΩ1+uΩ2)|(Ω) = |DuΩ1 |(Ω1)+|DuΩ2|(Ω2)+

∫

∂Ω1∩∂Ω2

|u+Ω1
(x)− u−Ω2

(x)|dHN−1(x)

︸ ︷︷ ︸

additional interface term

,

(2.6)
where HN denotes the Hausdorff measure of dimension N , see Definition 2.4.5. The
symbols u+ and u− define the “interior” trace of u and the “exterior” trace of u on
∂Ω1 ∩ ∂Ω2.

2.7 On Γ-Convergence: Discrete to Continuous Approximation 33

2.7 On Γ-Convergence: Discrete to Continuous

Approximation

As it is our intention to develop iterative algorithms based on domain decomposi-
tions, which minimize energies including total variation terms, and to prove their
convergence by using compactness arguments, we need to work with a topology
which is strong enough for traces of functions on boundaries to be continuous. Un-
fortunately, while the trace of bounded variation functions on boundaries of Lip-
schitz domains is indeed continuous with respect to the topology induced by the
BV-norm (2.4), it is not continuous with respect to the weak-∗-topology, which is
the natural one associated to bounded sequences, see Theorem 2.6.8. Hence most of
our results of convergence will be developed in a discretized setting, which is finite
dimensional, and has only strong topology. From an applicative point of view this
is not a restriction, as in practice, in order to implement such algorithms we need to
discretize the problem. Moreover, by using the notion of Γ-convergence, which was
originally introduced by De Giorgi [49, 50] with the aim of giving a meaning to the
convergence of a sequence of functionals, we show that discretized versions of the
total variation in fact Γ-converge to the continuous one. This implies that discrete
minimizers of functionals with total variation terms are appropriate approximations
in the weak-∗-sense of minimizers of the continuous functionals.

Definition 2.7.1. Let (X, d) be a metric space and F, Fn : X → R̄. We say that a
sequence of functions (Fn)n Γ-converges to F if:

(i) For every u ∈ X and for every sequence (un)n ⊂ X converging to u we have

F (u) ≤ lim inf
n→+∞

Fn(un).

(ii) For every u ∈ X there exists a sequence (un)n ⊂ X converging to u such that

F (u) ≥ lim sup
n→+∞

Fn(un).

One important consequence of Definition 2.7.1 is that subject to lower semi-
continuity and coercivity conditions, if a sequence of functionals Fn Γ-converges to
the target functional F , then the corresponding minimizers of Fn also converge to
minimizers of F , see [48, Corollary 7.20].

Now we would like to discuss the concept of Γ-convergence for the total variation
in more detail. For practical use often a discretization of the total variation is
considered. In order to prove that a discretization of the total variation indeed
Γ-converges to the continuous total variation, one actually needs only standard
concepts from the literature. Nevertheless, the standard literature, as for instance
[12], does not completely cover this concrete case. Therefore we make an effort to
discuss in details in R and R

2 the Γ-convergence properties of a discretization of the
total variation.

34 Chapter 2: Preliminaries

Example 1: Let Ω = [0, 1], u : Ω → R and F : L1([0, 1]) → R given by

F (u) =

{

|Du|([0, 1]) if u ∈ BV ([0, 1])

+∞ otherwise
.

Divide Ω into n ∈ N \ {0} equidistant intervals [i
n
, i+1
n
], i = 1, . . . , n − 1. Moreover

we define the set of piecewise affine functions

An([0, 1]) = {u ∈ W 1,1([0, 1]) : u is affine on each interval [xi, xi+1] ⊂ [0, 1],

i = 1, . . . , n− 1}.

We set xi =
i
n
and we use the notation ui = u(xi). If u ∈ An([0, 1]), then we also

have that the derivative of u denoted by u′ is

u′ =
ui+1 − ui

1/n
(2.7)

on the interval [xi, xi+1]. We study now the limit of the sequence (Gn) as n→ +∞
with Gn : An([0, 1]) → [0,+∞] given by

Gn(u) =
n−1∑

i=0

|ui+1 − ui| .

Note that Gn may be interpreted as the discrete analogue of the continuous total
variation. The “integral counterpart” of Gn is given by

Fn(u) =

{∫ 1

0
|u′|dx if u ∈ An([0, 1])

+∞ otherwise
, (2.8)

where u′ is as in (2.7). With this identification we have that Gn Γ-converges to F
if Fn defined in (2.8) Γ-converges to F . Hence we need to check now the conditions
(i) and (ii) of Definition 2.7.1:

(i) For every u ∈ L1([0, 1]) and for every sequence (un)n converging to u in L1(0, 1)
we have

F (u) ≤ lim inf
n→+∞

Fn(un).

This immediately follows from the lower semicontinuity of the total variation
with respect to the L1-convergence and hence of the lower semicontinuity of
F , i.e., lim infn→+∞ F (un) ≥ F (u).

(ii) For every u ∈ L1([0, 1]) there exists a sequence (un)n converging to u in
L1([0, 1]) such that

F (u) ≥ lim sup
n→+∞

Fn(un).

2.7 On Γ-Convergence: Discrete to Continuous Approximation 35

Note that for u ∈ L1([0, 1]) \ BV ([0, 1]) we have that F (u) = +∞ and hence
any sequence (un)n ⊂ L1([0, 1]) converging to u has the property

lim sup
n→+∞

Fn(un) ≤ F (u) = +∞.

Thus without loss of generality we assume that u ∈ BV (0, 1).

For u ∈ BV ([0, 1]) by Theorem 2.6.5 there exists a sequence (vn)n ⊂ C∞([0, 1])
converging to u in L1([0, 1]) such that

lim
n→+∞

∫ 1

0

|∇vn|dx = |Du|([0, 1]).

Moreover assume that un ∈ An([0, 1]) for all n such that un(xi) = vn(xi). By
noting that u′n is constant on each interval [xi, xi+1] for all i = 0, . . . , n− 1 we
obtain

Fn(un) =

∫ 1

0

|u′n(x)|dx =
n−1∑

i=0

∫ xi+1

xi

|u′n(x)|dx =
n−1∑

i=0

|
∫ xi+1

xi

u′n(x)dx|

=
n−1∑

i=0

|un(xi)− un(xi+1)| =
n−1∑

i=0

|vn(xi)− vn(xi+1)|

≤
n−1∑

i=0

∫ xi+1

xi

|v′n(x)|dx =

∫ 1

0

|v′n(x)|dx.

(2.9)

Now we take the lim sup for n→ +∞ on both sides in (2.9) and by Theorem
2.6.5 we obtain

lim sup
n→+∞

Fn(un) ≤ lim sup
n→+∞

∫ 1

0

|v′n(x)|dx = F (u).

Now it is left to show that the sequence (un)n indeed converges to u ∈
BV ([0, 1]) in L1([0, 1]) or equivalently that (un−vn)n converges to 0 in L1([0, 1]).
We have

∫ 1

0

|un(x)− vn(x)|dx =
n−1∑

i=0

∫ xi+1

xi

|un(x)− vn(x)|dx

=
n−1∑

i=0

∫ xi+1

xi

∣
∣
∣
∣

∫ x

xi

u′n(t)− v′n(t)dt

∣
∣
∣
∣
dx

≤
n−1∑

i=0

∫ xi+1

xi

dx

∫ xi+1

xi

|u′n(t)− v′n(t)| dt

=
1

n

∫ 1

0

|u′n(t)− v′n(t)| dt.

36 Chapter 2: Preliminaries

Now by the triangle inequality and the observation that there exists a constant
c < +∞ such that ‖v′n‖L1([0,1]) ≤ c and ‖u′n‖L1([0,1]) ≤ c we obtain

1

n

∫ 1

0

|un(x)− vn(x)|dx ≤ 1

n

(∫ 1

0

|u′n(t)|dt+
∫ 1

0

|v′n(t)|dt
)

≤ 2c

n
.

If we take in the latter inequality the limit for n→ +∞, then we obtain that
limn→+∞ ‖un − vn‖L1([0,1]) = 0. Hence we showed that the discrete functional
En indeed Γ-converges to F .

Example 2: Let hn = 2−n for n ∈ N \ {0} and we consider a regular mesh of
triangles Thn with nodes on the regular grid hn · Z ∩ [0, 1]2.

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

Figure 2.1: Dyadic mesh of triangles Thn with nested finer mesh.

Note that the triangular mesh Thn+1 is nested in the coarser mesh Thn , see Figure
2.1. Associated to this mesh we consider the following space

Ahn = {u ∈ C([0, 1]2) : u|τ is an affine function for all triangles τ ∈ Thn}.

Note that u|τ (x) = 〈x, cτ 〉R2 + ατ where cτ ∈ R
2 and ατ ∈ R. In particular ∇u|τ =

cτ ∈ R
2.

Every node of the mesh is denoted by xi,j = (hn · i, hn · j) for i, j = 0, . . . , h−1
n = 2n.

With this notation we write for u ∈ Ahn

ui,j := u(xi,j).

Every two triangles τ−i,j and τ
+
i,j that share a long side form a square, see Figure 2.2.

It is not difficult to show that

∇u|τ− =

(
ui+1,j − ui,j

hn
,
ui,j+1 − ui,j

hn

)

and

∇u|τ+ =

(
ui+1,j+1 − ui,j+1

hn
,
ui+1,j+1 − ui+1,j

hn

)

2.7 On Γ-Convergence: Discrete to Continuous Approximation 37

τ−i,j

τ+i,j

@
@

@
@

@
@

@
@

@
@

@
@

Figure 2.2: Square Qi,j formed by two triangles, i.e., Qi,j = τ−i,j ∪ τ+i,j.

for all u ∈ Ahn . Hence, if we denote Qi,j = τ−i,j ∪ τ+i,j, we have

∫

Qi,j

|∇u(x)|dx =

∫

τ−i,j

√
∣
∣
∣
∣

ui+1,j − ui,j
hn

∣
∣
∣
∣

2

+

∣
∣
∣
∣

ui,j+1 − ui,j
hn

∣
∣
∣
∣

2

dx

+

∫

τ+i,j

√
∣
∣
∣
∣

ui+1,j+1 − ui,j+1

hn

∣
∣
∣
∣

2

+

∣
∣
∣
∣

ui+1,j+1 − ui+1,j

hn

∣
∣
∣
∣

2

dx

=
h2n
2

(
√
∣
∣
∣
∣

ui+1,j − ui,j
hn

∣
∣
∣
∣

2

+

∣
∣
∣
∣

ui,j+1 − ui,j
hn

∣
∣
∣
∣

2

+

√
∣
∣
∣
∣

ui+1,j+1 − ui,j+1

hn

∣
∣
∣
∣

2

+

∣
∣
∣
∣

ui+1,j+1 − ui+1,j

hn

∣
∣
∣
∣

2)

=
hn
2

(√

|ui+1,j − ui,j|2 + |ui,j+1 − ui,j|2

+

√

|ui+1,j+1 − ui,j+1|2 + |ui+1,j+1 − ui+1,j|2
)

.

Hence
∫

[0,1]2
|∇u(x)|dx =

hn
2

2n−1∑

i=0

2n−1∑

j=0

(√

|ui+1,j − ui,j|2 + |ui,j+1 − ui,j|2

+

√

|ui+1,j+1 − ui,j+1|2 + |ui+1,j+1 − ui+1,j|2
)

.

(2.10)

We have two functionals in L1([0, 1]2):

F (u) =

{

|Du|([0, 1]2) if u ∈ BV ([0, 1]2)

+∞ otherwise

Fhn(u) =

{∫

[0,1]2
|∇u(x)|dx if u ∈ Ahn

+∞ otherwise
.

38 Chapter 2: Preliminaries

We need to prove the following two conditions, in order to show that Fhn Γ-converges
to F :

(i) For every u ∈ L1([0, 1]2) and for every sequence (un)n ⊂ L1([0, 1]2) converging
to u such that

F (u) ≤ lim inf
n→+∞

Fhn(un).

This condition comes for free by the lower semicontinuity of the total variation
with respect to the L1-convergence.

(ii) For every u ∈ L1([0, 1]2) there exists a sequence (un)n ⊂ L1([0, 1]2) converging
to u such that

F (u) ≥ lim sup
n→+∞

Fhn(un).

Actually we construct a sequence (un)n such that lim supn→+∞ Fhn(un) =
F (u).

Note that for u ∈ L1([0, 1]2) \ BV ([0, 1]2), we have that F (u) = +∞. Hence
any sequence (un)n ⊂ L1([0, 1]2) converging to u has the property

Fhn(un) ≤ F (u) = +∞

and hence lim supn→+∞ Fhn(un) ≤ F (u) = +∞. Therefore without loss of
generality we assume u ∈ BV ([0, 1]2).

For u ∈ BV ([0, 1]2) by Theorem 2.6.5 there exists a sequence (vn)n in C
∞([0, 1]2)

such that vn → u in L1([0, 1]2) and

lim
n→+∞

∫

[0,1]2
|∇vn|dx = |Du|([0, 1]2). (2.11)

For all v ∈ C∞([0, 1]2) we are able to construct an interpolating piecewise
affine function vhn ∈ Ahn , i.e., v(xi,j) = vhn(xi,j) for all i, j = 0, . . . , 2n. We
define the operator

Πhn : C∞([0, 1]2) → Ahn , v 7→ vhn = Πhnv.

By [34, Theorem 3.1.5] we have

Πhnv → v in L1([0, 1]2) for n→ +∞ for all v ∈ C∞([0, 1]2)

and ∫

[0,1]2
|∇v −∇Πhnv|dx ≤ chn

∫

[0,1]2
|∇2v|dx. (2.12)

Hence also ∇Πhnv → ∇v in L1([0, 1]2) as n → +∞. We have that for all
k ∈ N \ {0} there exists an nk > nk−1 such that for all n ≥ nk

∣
∣
∣
∣
|Du|([0, 1]2)−

∫

[0,1]2
|∇vn|dx

∣
∣
∣
∣
≤ 2−k−1,

2.7 On Γ-Convergence: Discrete to Continuous Approximation 39

which is due to (2.11), and we have that there exists an ñ = ñ(n) such that

∣
∣
∣
∣

∫

[0,1]2
|∇vn|dx−

∫

[0,1]2
|∇Πhñvn|dx

∣
∣
∣
∣
≤ 2−k−1,

because of (2.12). Hence by the triangle inequality we obtain that

∣
∣
∣
∣
|Du|([0, 1]2)−

∫

[0,1]2
|∇Πhñvn|dx

∣
∣
∣
∣
≤ 2−k.

Actually through n we have ñ = ñ(nk) = ñk.

Therefore we can construct a sequence

Πhñk
vnk ∈ Ahñk

such that

lim
k→+∞

∫

[0,1]2
|∇Πhñk

vnk |dx
︸ ︷︷ ︸

=Fhñk
(uñk)

= |Du|([0, 1]2).

Without loss of generality we assume that ñk+1 > ñk. Notice now that

Πhñk
vnk ∈ Ahn for all n ≥ ñk,

and this is due to the nesting property of finer meshes, in particular for ñk ≤
n ≤ ñk+1 − 1. Hence, up to repeating the same term

un = Πhñk
vnk for all n = ñk, . . . , ñk+1 − 1,

we constructed a sequence un ∈ Ahn such that un → u in L1([0, 1]2) and

lim
n→+∞

Fhn(un) = F (u).

This concludes the proof of the second condition and shows that Fhn indeed
Γ-converges to F .

Remark 2.7.2. The definition of discrete total variation which we use later for our
discretization, see Section 3.2.2, slightly differs from (2.10). This choice is motivated
by simpler computation of the divergences (see (3.23)), which is used heavily in the
numerical implementation, see Section 3.2.6 (e.g., Chambolle’s algorithm in (3.63)).
Nevertheless, the two definitions are nearly equivalent and in practice they produce
similar minimizers.

Chapter 3

Subspace Correction for
Non-smooth and Non-additive
Problems

In this chapter we introduce a subspace correction method for functionals involving
a non-smooth and non-additive term. Section 3.1 is based on the work [66], where a
subspace correction method for such problems is proposed. There an implementation
of this algorithm is suggested that is guaranteed to converge and to decrease the
objective energy monotonically. Only under technical conditions on the interfaces of
the subspaces it is possible to prove its convergence to minimizers of J . We will show
a simple counterexample, see Remark 3.1.1, which emphasizes that the convergence
to an expected minimizer of subspace correction methods for non-smooth and non-
additive problems is far from being obvious. Moreover in Section 3.2, which is based
on the work [63], we specify the subspace correction algorithm from [66] to the case
of an orthogonal wavelet decomposition and for deblurring problems. This provides
us with a framework in which we can construct another more specific and more
sophisticated counterexample, which shows that in general also for such splittings
we cannot expect convergence to a minimizer of J , even for the simplest case of
the identity operator T = I. Further we show additional properties of the limit of
the sequence produced by the algorithm, and obtain an additional condition under
which the obtained limit is indeed the expected minimizer. Although this newly
obtained condition cannot be ensured to hold always for any operator T , we show
that an orthogonal wavelet space decomposition for deblurring problems works in
practice very efficiently, as already observed by Vonesch and Unser in their study
related to ℓ1-regularization [116]. In particular, with the help of the newly obtained
condition of convergence, we are able to show in our numerical examples that the
sequence produced by this algorithm in fact numerically converges to a minimizer
of J .

40

3.1 An Alternating Algorithm for Orthogonal Splittings 41

3.1 An Alternating Algorithm for Orthogonal Split-

tings

In the sequel H is a real separable Hilbert space endowed with the norm ‖ · ‖H. Let
us recall the subspace correction method proposed by Fornasier and Schönlieb in
[66]. We are interested in the minimization in H of functionals in the general form

J (u) := ‖Tu− g‖2H + 2αψ(u), (3.1)

where T : H → H is a bounded linear operator, g ∈ H is a datum, α > 0 is a
fixed constant, and ψ : H → R

+ ∪ {+∞} is a sublinear, 1-homogeneous and lower
semicontinuous function. For such ψ there exists a closed convex set Kψ ⊂ H such
that

ψ∗(u) = sup
v∈H

{〈u, v〉 − ψ(v)} = χKψ(u) =

{

0 if u ∈ Kψ

+∞ otherwise
.

We assume in the following that Kψ = −Kψ. Moreover for any convex set K ⊂ H
we denote PK(u) = argminv∈K ‖u−v‖H the orthogonal projection onto K. Assume
that associated with ψ there exists a dense subspace Hψ of H endowed with the
norm

‖u‖Hψ := ‖u‖H + ψ(u).

Since Hψ is a dense subspace of H we have that

Hψ ⊂ H ≃ H∗ ⊂ (Hψ)∗,

where the symbole ≃ denotes an isomorphism and the duality 〈·, ·〉(Hψ)∗×Hψ extends
the scalar product on H. In particular, H is weakly-∗-dense in (Hψ)∗. Further we
require that

(H1) bounded subsets in Hψ are sequentially bounded in another topology τψ of
Hψ;

(H2) ψ is lower-semicontinuous with respect to the topology τψ;

(H3) Hψ = {u ∈ H : ψ(u) <∞}.

In order to guarantee the existence of minimizers for J we assume that:

J is coercive in H, i.e., {J ≤ C} := {u ∈ H : J (u) ≤ C} is bounded in H. (C)

Instead of minimizing J on the space H we decompose H into two mutually
orthogonal, and complementary subspaces V1, V2, i.e., H = V1⊕V2. By πVi : H → Vi
we define the corresponding orthogonal projections onto Vi, for i = 1, 2. Then every

42 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

u ∈ H has a unique representation u = πV1(u) + πV2(u). In the sequel we denote
ui = πVi(u) for i = 1, 2. Further we require the mapping property

πVi |Hψ : Hψ → V ψ
i := Hψ ∩ Vi, i = 1, 2,

continuously in the norm of Hψ, and Range(πVi |Hψ) = V ψ
i is closed. This implies

that Hψ splits into the direct sum Hψ = V ψ
1 ⊕ V ψ

2 . We are mainly interested in the
situation where for such an orthogonal splitting we have that

ψ(πV1(u) + πV2(v)) 6= ψ(πV1(u)) + ψ(πV2(v)),

as it happens in the case of the total variation, see (2.6). For simplicity, in this thesis
we principally restrict ourself to split the problem into two subspaces V1, V2, by
noting that one can easily generalize the argument to a decomposition into multiple
subspaces V1, . . . , VN , cf. Remark 4.2.10, and we provide several numerical examples
in this context, see Section 4.2.4 and Section 4.4.3.

With this splitting we want to minimize J by suitable instances of the following
alternating algorithm: pick an initial V1⊕V2 ∋ u

(0)
1 +u

(0)
2 := u(0) ∈ Hψ, for example,

u(0) = 0, and iterate






u
(n+1)
1 ≈ argminv1∈V1 J (v1 + u

(n)
2)

u
(n+1)
2 ≈ argminv2∈V2 J (u

(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

(3.2)

We use “≈” (the approximation symbol) because in practice we never perform the
exact minimization. Before we discuss in the next section how to realize the approx-
imation to the individual subspace minimizations we introduce a counterexample
from [118] for a non-smooth and non-additive function on [0, 1]2, for which such a
splitting method in general does not work.

Remark 3.1.1 (Counterexample). Let V1 = V2 = [0, 1], H = V1 × V2 and

J (u) = J (u1 + u2) = J (u1, u2) =

{

u1 − 2u2 if 0 ≤ u2 ≤ u1 ≤ 1

u2 − 2u1 if 0 ≤ u1 ≤ u2 ≤ 1
.

We observe that J (u) = |u1 − u2| − min(u1, u2) and hence it is a convex function
on H. Moreover the minimizer of minu2 J (u1, u2) and minu1 J (u1, u2) are u1 = u2.

Thus u
(1)
1 = u

(0)
2 , u

(1)
2 = u

(1)
1 = u

(0)
2 and hence for all ℓ ≥ 1, u

(ℓ)
1 = u

(ℓ)
2 = u

(0)
2 and

J (u(ℓ)) = −u(0)2 , whereas minu∈H J (u) = −1.

3.1.1 Subspace Minimization

Let us consider, for example, the subspace minimization of (3.2) in V1:

arg min
u1∈V1

J (u1 + u2) = arg min
u1∈V1

‖Tu1 − (g − Tu2)‖2H + 2αψ(u1 + u2). (3.3)

3.1 An Alternating Algorithm for Orthogonal Splittings 43

First of all, observe that {u ∈ H : πV2u = u2,J (u) ≤ C} ⊂ {J ≤ C}, hence
the former set is also bounded by assumption (C) and the minimization (3.3) has
solutions.

In order to realize the approximation to the individual subspace minimization, it
is useful for us to introduce an auxiliary functional J s

1 , called the surrogate functional
of J : assume a, u1 ∈ V1 and u2 ∈ V2 and define

J s
1 (u1 + u2, a) := J (u1 + u2) + ‖u1 − a‖2H − ‖T (u1 − a)‖2H. (3.4)

A straightforward computation shows that

J s
1 (u1 + u2, a) = ‖u1 − (a+ πV1T

∗(g − Tu2 − Ta))‖2H + 2αψ(u1 + u2) + Φ(a, g, u2),

where Φ is a function of a, g, u2 only. Note that now the variable u1 is not anymore
affected by the action of T . Consequently, we want to realize an approximate solution
to (3.3) by using the following algorithm: for u

(0)
1 ∈ V ψ

1 ,

u
(ℓ+1)
1 = arg min

u1∈V1
J s

1 (u1 + u2, u
(ℓ)
1), ℓ ≥ 0. (3.5)

Before proving the convergence of this algorithm, we need to clarify first how to
practically compute u

(ℓ+1)
1 for u

(ℓ)
1 given. To this end we need to introduce further

notions and to recall some useful results.

Remark 3.1.2. Assume ϕ ≥ 0 is a proper lower semicontinuous convex function.
For F (u; z) = ‖u− z‖2H + 2ϕ(u), we define the function

proxϕ(z) := argmin
u∈H

F (u; z),

which is called the proximity map in the convex analysis literature, e.g., [53, 39],
and generalized thresholding in the signal processing literature, e.g., [42, 44, 45, 61].
Observe that by ϕ ≥ 0 the function F is coercive in H and by lower semicontinuity
and strict convexity of the term ‖u− z‖2H this definition is well-posed. In particular,
proxϕ(z) is the unique solution of the following differential inclusion

0 ∈ (u− z) + ∂ϕ(u).

It is well-known [53, 102] that the proximity map is nonexpansive, i.e.,

‖proxϕ(z1)− proxϕ(z2)‖H ≤ ‖z1 − z2‖H for all z1, z2 ∈ H.

In particular, if ϕ is a 1-homogeneous function then

proxϕ(z) = (I − PKϕ)(z),

where Kϕ is a suitable closed convex set associated to ϕ, see for instance [39].

44 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

We realize that in order to address the subminimization problem

arg min
u1∈V1

J s
1 (u1 + u2, a) = arg min

u1∈V1
‖u1 − z1‖2H + 2αψ(u1 + u2),

where z1 = a + πV1T
∗(g − Tu2 − Ta), we have to solve a constrained optimization

problem of the type
argmin

x∈H
{F (x) : G(x) = 0}, (3.6)

where F : H → R is a convex function and G : H → H is a bounded linear operator
on H. There exist a variety of methods that solve this type of constrained mini-
mization problems, as the Augmented Lagrangian Method [72] and its adaptations
known under the name of the Bregman iterations [19, 20, 69, 96, 97, 122, 123, 124]
because of their relationship to Bregman distance [14]. Here, for simplicity, we use
the iterative oblique thresholding algorithm as proposed in the work [66], which is
based on the following useful result:

Theorem 3.1.3 (Generalized Lagrange multipliers for non-smooth objective func-
tions, Theorem 1.8, [6]). If F is continuous in a point of kerG and G has closed
range in H, then a point x0 ∈ kerG is an optimal solution of (3.6) if and only if

∂F (x0) ∩ RangeG∗ 6= ∅.

By using this result one can show the following statement that provides a method
to solve each iteration step of (3.5).

Theorem 3.1.4 (Oblique thresholding). For u2 ∈ V ψ
2 and for z ∈ V1 the following

statements are equivalent:

(i) u∗1 = argminu∈V1 ‖u− z‖2H + 2αψ(u+ u2);

(ii) there exists η ∈ Range(πV2|Hψ)∗ ≃ (V ψ
2)∗ such that 0 ∈ u∗1−(z−η)+α∂Hψψ(u∗1+

u2).

Moreover, the following statements are equivalent and imply (i) and (ii).

(iii) there exists η ∈ V2 such that u∗1 = (I − PαKψ)(z + u2 − η)− u2;

(iv) there exists η ∈ V2 such that η = πV2PαKψ(η − (z + u2)).

Proof. Let us show the equivalence between (i) and (ii). The problem in (i) can be
reformulated as

u∗1 = arg min
u∈Hψ

{F (u) := ‖u− z‖2H + 2αψ(u+ u2), πV2(u) = 0}.

The latter is a special instance of (3.6). Moreover, F is continuous on V ψ
1 ⊂ V1 =

ker πV2 in the norm-topology of Hψ (while in general it is not on V1 with the norm

3.1 An Alternating Algorithm for Orthogonal Splittings 45

topology of H). Recall now that πV2|Hψ is assumed to be a bounded and surjective
map with closed range in the norm-topology of Hψ (see above). This means that
(πV2 |Hψ)∗ is injective and that Range(πV2|Hψ)∗ ≃ (V ψ

2)∗ is closed. Therefore, by an
application of Theorem 3.1.3 the optimality of u∗1 is equivalent to the existence of
η ∈ Range(πV2|Hψ)∗ ≃ (V ψ

2)∗ such that

−η ∈ ∂HψF (u∗1).

Due to the continuity of ‖u− z‖2H in Hψ, we have, by Proposition 2.3.4, that

∂HψF (u∗1) = 2(u∗1 − z) + 2α∂Hψψ(u∗1 + u2).

Thus, the optimality of u∗1 is equivalent to

0 ∈ u∗1 − (z − η) + α∂Hψψ(u∗1 + u2).

This concludes the equivalence of (i) and (ii). Let us show now that (iii) implies
(ii). The condition in (iii) can be rewritten as

ξ = (I − PαKψ)(z + u2 − η), ξ = u∗1 + u2.

Since ψ ≥ 0 is 1-homogeneous and lower semincontinuous, by Remark 3.1.2, the
latter is equivalent to

0 ∈ ξ − (z + u2 − η) + α∂Hψ(ξ)

or, by (H3),

ξ = argmin
u∈H

‖u− (z + u2 − η)‖2H + 2αψ(u)

= arg min
u∈Hψ

‖u− (z + u2 − η)‖2H + 2αψ(u)

The latter optimal problem is equivalent to

0 ∈ ξ − (z + u2 − η) + α∂Hψψ(ξ) or 0 ∈ u∗1 − (z − η) + α∂Hψψ(u∗1 + u2).

Since V2 ⊂ (V ψ
2)∗ ≃ Range(πV2|Hψ)∗ we obtain that (iii) implies (ii). We prove now

the equivalence between (iii) and (iv). We have

u∗1 = (I − PαKψ)(z + u2 − η)− u2 ∈ V1

= z − η − PαKψ(z + u2 − η).

By applying πV2 to both sides of the latter equality we get

0 = −η − πV2PαKψ(z + u2 − η).

By recalling that Kψ = −Kψ, we obtain the fixed point equation

η = πV2PαKψ(η − (z + u2)). (3.7)

46 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

Conversely, assume η = πV2PαKψ(η − (z + u2)) for some η ∈ V2. Then

(I − PαKψ)(z + u2 − η)− u2 = z − η − PαKψ(z + u2 − η)

= z − πV2PαKψ(η − (z + u2))− PαKψ(z + u2 − η)

= z − (I − πV2)PαKψ(z + u2 − η)

= z − πV1PαKψ(z + u2 − η) = u∗1 ∈ V1.

Remark 3.1.5. For H of finite dimension, which is the relevant case in numerical
applications, all the spaces are independent of the particular attached norm and
coincide with their duals. Hence all the statements (i)-(iv) of the previous theorem
are equivalent in this case.

We wonder now whether any of the conditions in Theorem 3.1.4 is indeed prac-
tically satisfied. In particular, we want to show that η ∈ V1 as in (iii) or (iv) of the
previous theorem is provided as the limit of the following iterative algorithm:

η(0) ∈ V2, η(m+1) = πV2PαKψ(η
(m) − (z + u2)), m ≥ 0. (3.8)

Proposition 3.1.6. The following statements are equivalent:

(i) there exists η ∈ V2 such that η = πV2PαKψ(η − (z + u2)) (which is in turn the
condition (iv) of Theorem 3.1.4)

(ii) the iteration (3.8) converges weakly to any η ∈ V2 that satisfies (3.7).

In particular, there are no fixed points of (3.7) if and only if ‖η(m)‖H → ∞, for
m→ ∞.

For the proof of this proposition we need to recall some well-known notions and
results.

Definition 3.1.7. A nonexpansive map T : H → H is strongly nonexpansive if for
(un − vn)n bounded and ‖T (un)− T (vn)‖H − ‖un − vn‖H → 0 we have

un − vn − T (un)− T (vn) → 0, n→ ∞.

Proposition 3.1.8 (Corollaries 1.3, 1.4, and 1.5 [15]). Let T : H → H be a strongly
nonexpansive map. Then fixT = {u ∈ H : T (u) = u} 6= ∅ if and only if (T nu)n
converges weakly to a fixed point u0 ∈ fixT for any choice of u ∈ H.

Proof. (Proposition 3.1.6) Orthogonal projections onto convex sets are strongly non-
expansive [7, Corollary 4.2.3]. Moreover, compositions of strongly nonexpansive
maps are strongly nonexpansive [15, Lemma 2.1]. By an application of Proposition
3.1.8 we immediately have the result, since any map of the type T (ξ) = Q(ξ) + ξ0
is strongly nonexpansive whenever Q is (this is a simple observation from the def-
inition of strongly nonexpansive map). Indeed, we are looking for fixed points of
η = πV2PαKψ(η − (z + u2)) or, equivalently, of ξ = πV2PαKψ

︸ ︷︷ ︸

:=Q

(ξ)− (z + u2)
︸ ︷︷ ︸

:=ξ0

.

3.1 An Alternating Algorithm for Orthogonal Splittings 47

Convergence of the Subspace Minimization

For u∗1 = argminu1∈V1 ‖u1 − z‖+ 2αψ(u1 + u2) we observed by Remark 3.1.2 that

u∗1 = proxαψ(·+u2)(z).

Now let us denote

S
ψ,V1,V2
α (z; u2) := proxαψ(·+u2)(z).

From [39, Subsection 2.3] we can conclude that

‖Sψ,V1,V2α (z1; u2)− S
ψ,V1,V2
α (z2; u2)‖H ≤ ‖z1 − z2‖H, for all z1, z2 ∈ V1.

In view of the previous results it was observed in [66] that the iteration (3.5) can
be computed by

u
(ℓ+1)
1 = S

ψ,V1,V2
α (u

(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1); u2). (3.9)

In certain cases, e.g., in finite dimensions, this iteration can be explicitly expressed
as

u
(ℓ+1)
1 = S

ψ
α(u

(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1) + u2 − η(ℓ))− u2,

where S
ψ
α = (I − PαKψ) and η

(ℓ) ∈ V2 is any solution of the fixed point equation

η = πV2PαKψ(η − (u
(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1) + u2)).

The computation of η(ℓ) can be implemented by the algorithm (3.8).

Theorem 3.1.9. Assume u2 ∈ V ψ
2 and ‖T‖ < 1. Then the iteration (3.9) converges

weakly to a solution u∗1 ∈ V ψ
1 of (3.3) for any initial choice of u

(0)
1 ∈ V ψ

1 .

Proof. For the sake of completeness, we report the proof of this theorem, which
follows the same strategy already proposed in the paper [42]. Similar results can
also be found in [39]. In particular we want to apply Opial’s fixed point theorem [95]:

Theorem 3.1.10. Let the mapping A from H to H satisfy the following conditions:

(i) A is nonexpansive: for all z, z′ ∈ H, ‖Az − Az′‖H ≤ ‖z − z′‖H;

(ii) A is asymptotically regular: for all z ∈ H, ‖An+1z−Anz‖H → 0, for n→ +∞;

(iii) the set F = fixA of fixed points of A in H is not empty.

Then for all z ∈ H, the sequence (Anz)n converges weakly to a fixed point in F .

48 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

We need to prove that A(u1) := S
ψ,V1,V2
α (u1 + πV1T

∗(g − Tu2 − Tu1); u2) fulfills
the assumptions of Theorem 3.1.10 on V1.

Step 1. As stated at the beginning of this section, there exist solutions u∗1 ∈ V ψ
1

to (3.3). With a similar argument to the one used to prove the equivalence of (i)
and (ii) in Theorem 3.1.4, the optimality of u∗1 can be proven to be equivalent to

0 ∈ −πV1T ∗(g − Tu2 − Tu∗1) + η + α∂Hψψ(u∗1 + u2),

for some η ∈ (V ψ
2)∗. By adding and subtracting u∗1 we obtain

0 ∈ u∗1 − ((u∗1 + πV1T
∗(g − Tu2 − Tu∗1))

︸ ︷︷ ︸

:=z

−η) + α∂Hψψ(u∗1 + u2).

By applying the equivalence of (i) and (ii) in Theorem 3.1.4 we obtain that u∗1 is a
fixed point of the following equation

u∗1 = S
ψ,V1,V2
α (u∗1 + πV1T

∗(g − Tu2 − Tu∗1); u2),

hence fixA 6= ∅.
Step 2. The algorithm produces iterations that are asymptotically regular, i.e.,

‖u(ℓ+1)
1 − u

(ℓ)
1 ‖H → 0. Observe that, for a ∈ Vi and ‖T‖ < 1,

‖ui − a‖2H − ‖Tui − Ta‖2H ≥ C‖ui − a‖2H, (3.10)

for C = (1− ‖T‖2) > 0. Hence

J (u) = J s
i (u, ui) ≤ J s

i (u, a), (3.11)

and
J s
i (u, a)− J s

i (u, ui) ≥ C‖ui − a‖2H. (3.12)

Then we have the following estimates

J (u
(ℓ)
1 + u2) = J s

1 (u
(ℓ)
1 + u2, u

(ℓ)
1)

≥ J s
1 (u

(ℓ+1)
1 + u2, u

(ℓ)
1)

≥ J s
1 (u

(ℓ+1)
1 + u2, u

(ℓ+1)
1) = J (u

(ℓ+1)
1 + u2).

Since (J (u
(ℓ)
1 + u2))ℓ is monotonically decreasing and bounded from below by 0,

necessarily it is a convergent sequence. Moreover,

J (u
(ℓ)
1 + u2)− J (u

(ℓ+1)
1 + u2) ≥ C‖u(ℓ+1)

1 − u
(ℓ)
1 ‖2H,

and the latter convergence implies ‖u(ℓ+1)
1 − u

(ℓ)
1 ‖H → 0.

Step 3. We are left with showing the nonexpansiveness of A. By the nonexpan-
siveness of Sψ,V1,V2α (·; u2) we obtain

‖Sψ,V1,V2α (u11 + πV1T
∗(g − Tu2 − Tu11; u2)− S

ψ,V1,V2
α (u21 + πV1T

∗(g − Tu2 − Tu21; u2)‖H
≤ ‖u11 + πV1T

∗(g − Tu2 − Tu11)− (u21 + πV1T
∗(g − Tu2 − Tu21)‖H

= ‖(I − πV1T
∗TπV1)(u

1
1 − u21)‖H

≤ ‖u11 − u21‖H.
In the latter inequality we used once more that ‖T‖ < 1.

3.1 An Alternating Algorithm for Orthogonal Splittings 49

Remark 3.1.11. Note that the condition ‖T‖ < 1 in Theorem 3.1.9, and assumed
also later, is not automatically satisfied in general. However, in case the norm of
the given operator T exceeds 1, a proper rescaling of the problem re-establishes the
desired setting. The rescaling can be easily obtained by multiplying the functional J
by a positive constant γ < 1

‖T‖2
and by minimizing the resulting functional

Jγ(u) = ‖√γTu−√
γg‖22 + 2γα|Du|(Ω).

Note that the minimizers of the rescaled problem do coincide with minimizers of J .

Let us conclude this subsection by mentioning that all the results presented here
hold symmetrically for the minimization on V2, and that the notations should be
just adjusted accordingly.

3.1.2 Convergence of the Sequential Subspace Correction
Method

The suggested algorithm in [66] is to solve

argmin
u∈H

J (u)

by picking an initial V1 ⊕ V2 ∋ u
(0,L)
1 + u

(0,M)
2 := u(0) ∈ Hψ, e.g., u

(0)
i = 0, i = 1, 2,

and iterate







{

u
(n+1,0)
1 = u

(n,L)
1

u
(n+1,ℓ+1)
1 = argminu1∈V1 J s

1 (u1 + u
(n,M)
2 , u

(n+1,ℓ)
1) ℓ = 0, . . . , L− 1

{

u
(n+1,0)
2 = u

(n,M)
2

u
(n+1,m+1)
2 = argminu2∈V2 J s

2 (u
(n+1,L)
1 + u2, u

(n+1,m)
2) m = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2 .

(3.13)
Now let us recall the main convergence results established in [66] for any choice of
finite numbers L and M of inner iterations.

Theorem 3.1.12 (Convergence properties). The algorithm in (3.13) produces a
sequence (u(n))n in Hψ with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖H = 0;

(iii) the sequence (u(n))n has subsequences which converge weakly in H and in Hψ

endowed with the topology τψ;

50 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

(iv) if we additionally assume, for simplicity, that dimH <∞, (u(nk))k is a strongly
converging subsequence, and u(∞) is its limit, then u(∞) is a minimizer of J
whenever one of the following conditions holds

(a) ψ(u
(∞)
1 + η2)+ψ(u

(∞)
2 + η1)−ψ(u

(∞)
1 +u

(∞)
2) ≤ ψ(η1+ η2) for all ηi ∈ Vi,

i = 1, 2;

(b) ψ is differentiable at u(∞) with respect to Vi for one i ∈ {1, 2}, i.e., there
exists ∂

∂Vi
ψ(u(∞)) := ζi ∈ (Vi)

∗ such that

〈ζi, vi〉 = lim
t→0

ψ(u
(∞)
1 + u

(∞)
2 + tvi)− ψ(u

(∞)
1 + u

(∞)
2)

t
, for all vi ∈ Vi.

Proof. Let us first observe that

J (u(n)) = J s
1 (u

(n)
1 + u

(n)
2 , u

(n)
1) = J s

1 (u
(n,L)
1 + u

(n)
2 , u

(n+1,0)
1).

From the definition of u
(n+1,1)
1 and from the minimal properties of u

(n+1,1)
1 in (3.13)

we have
J s

1 (u
(n,L)
1 + u

(n)
2 , u

(n+1,0)
1) ≥ J s(u

(n+1,1)
1 + u

(n)
2 , u

(n+1,0)
1).

From (3.11) we have

J s
1 (u

(n+1,1)
1 + u

(n)
2 , u

(n+1,0)
1) ≥ J s

1 (u
(n+1,1)
1 + u

(n)
2 , u

(n+1,1)
1).

Putting in line these inequalities we obtain

J (u(n)) ≥ J (u
(n+1,1)
1 + u

(n)
2).

In particular, from (3.12) we have

J (u(n))− J (u
(n+1,1)
1 + u

(n)
2) ≥ C‖u(n+1,1)

1 − u
(n+1,0)
1 ‖2H.

After L steps we conclude the estimate

J (u(n)) ≥ J (u
(n+1,L)
1 + u

(n)
2),

and

J (u(n))− J (u
(n+1,L)
1 + u

(n)
2) ≥ C

L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2H.

By definition of u
(n+1,1)
2 and its minimal properties we have

J (u
(n+1,L)
1 + u

(n)
2) ≥ J s

2 (u
(n+1,L)
1 + u

(n+1,1)
2 , u

(n+1,0)
2).

By similar arguments as above we finally find the decreasing estimate

J (u(n)) ≥ J s
2 (u

(n+1,L)
1 + u

(n+1,M)
2) = J (u(n+1)), (3.14)

3.1 An Alternating Algorithm for Orthogonal Splittings 51

and
J (u(n))− J (u(n+1))

≥ C

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2H +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2H

)

. (3.15)

From (3.14) we have J (u(0)) ≥ J (u(n)). By the coerciveness condition (C), (u(n))n
is uniformly bounded in Hψ, hence there exists a H-weakly- and τψ-convergent
subsequence (u(nj))j. Let us denote u(∞) the weak limit of the subsequence. For
simplicity, we rename such a subsequence by (u(n))n. Moreover, since the sequence
(J (u(n)))n is monotonically decreasing and bounded from below by 0, it is also
convergent. From (3.15) and the latter convergence we deduce

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖2H +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖2H

)

→ 0, n→ ∞.

(3.16)
In particular, by the standard inequality (a2 + b2) ≥ 1

2
(a + b)2 for a, b > 0 and the

triangle inequality, we have also

‖u(n) − u(n+1)‖H → 0, n→ ∞. (3.17)

We would like now to show that the following outer lower semicontinuity holds

0 ∈ lim
n→∞

∂J (u(n)) ⊂ ∂J (u(∞)).

For this we need to assume that H-weakly- and τψ−convergences do imply strong
convergence in H. This is the case, e.g., when dim(H) < ∞. The optimality

condition for u
(n+1,L)
1 is equivalent to

0 ∈ u
(n+1,L)
1 − z

(n+1)
1 + α∂V1ψ(·+ u

(n,M)
2)(u

(n+1,L)
1),

where
z
(n+1)
1 := u

(n+1,L−1)
1 + πV1T

∗(g − Tu
(n,M)
2 − Tu

(n+1,L−1)
1).

Analogously we have

0 ∈ u
(n+1,M)
2 − z

(n+1)
2 + α∂V2ψ(·+ u

(n+1,L)
1)(u

(n+1,M)
2),

where
z
(n+1)
2 := u

(n+1,M−1)
2 + πV2T

∗(g − Tu
(n+1,L)
1 − Tu

(n+1,M−1)
2).

Due to the strong convergence of the sequence u(n) and by (3.16) we have the fol-
lowing limits for n→ ∞

ξ
(n+1)
1 := u

(n+1,L)
1 − z

(n+1)
1 → ξ1 := −πV1T ∗(g − Tu

(∞)
2 − Tu

(∞)
1) ∈ V1,

ξ
(n+1)
2 := u

(n+1,M)
2 − z

(n+1)
2 → ξ2 := −πV2T ∗(g − Tu

(∞)
2 − Tu

(∞)
1) ∈ V2,

52 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

and
ξ
(n+1)
1 + ξ

(n+1)
2 → ξ := T ∗(Tu(∞) − g).

Moreover, we have

− 1

α
ξ
(n+1)
1 ∈ ∂V1ψ(·+ u

(n,M)
2)(u

(n+1,L)
1),

meaning that

〈− 1

α
ξ
(n+1)
1 , η1 − u

(n+1,L)
1 〉+ ψ(u

(n+1,L)
1 + u

(n,M)
2) ≤ ψ(η1 + u

(n,M)
2), for all η1 ∈ V1.

Analogously we have

〈− 1

α
ξ
(n+1)
2 , η2−u(n+1,M)

2 〉+ψ(u(n+1,L)
1 +u

(n+1,M)
2) ≤ ψ(η2+u

(n+1,L)
1), for all η2 ∈ V2.

By taking the limits for n→ ∞ and by (3.16) we obtain

〈− 1

α
ξ1, η1 − u

(∞)
1 〉+ ψ(u(∞)) ≤ ψ(η1 + u

(∞)
2), for all η1 ∈ V1 (3.18)

〈− 1

α
ξ2, η2 − u

(∞)
2 〉+ ψ(u(∞)) ≤ ψ(η2 + u

(∞)
1), for all η2 ∈ V2. (3.19)

These latter conditions are rewritten in vector form as

0 ∈
(
ξ1
ξ2

)

+ α
(

∂V1ψ(·+ u
(∞)
2)(u

(∞)
1)× ∂V2ψ(·+ u

(∞)
1)(u

(∞)
2)

)

. (3.20)

Observe now that

2ξ + 2α∂Hψ(u
(∞)) = 2T ∗(Tu(∞) − g) + 2α∂Hψ(u

(∞)) = ∂J (u(∞)).

If 0 ∈ ξ+α∂Hψ(u
(∞)), then we would have the wanted minimality condition. While

the inclusion

∂Hψ(u
(∞)) ⊂ ∂V1ψ(·+ u

(∞)
2)(u

(∞
1)× ∂V2ψ(·+ u

(∞)
1)(u

(∞)
2),

easily follows from the definition of a subdifferential, the converse inclusion, which
would imply from (3.20) the wished minimality condition, does not hold in general.
Thus, we show the converse inclusion under one of the following two conditions:

(a) ψ(u
(∞)
1 + η2) + ψ(u

(∞)
2 + η1) − ψ(u

(∞)
1 + u

(∞)
2) ≤ ψ(η1 + η2) for all ηi ∈ Vi,

i = 1, 2;

(b) ψ is differentiable at u(∞) with respect to Vi for one i ∈ {1, 2}, i.e., there exists
∂
∂Vi
ψ(u(∞)) := ζi ∈ (Vi)

∗ such that

〈ζi, vi〉 = lim
t→0

ψ(u
(∞)
1 + u

(∞)
2 + tvi)− ψ(u

(∞)
1 + u

(∞)
2)

t
, for all vi ∈ Vi.

3.1 An Alternating Algorithm for Orthogonal Splittings 53

Let us start with condition (a). We want to show that

〈− 1

α
ξ, η − u(∞)〉+ ψ(u(∞)) ≤ ψ(η), for all η ∈ H,

or, equivalently, that

〈− 1

α
ξ1, η1−u(∞)

1 〉+〈− 1

α
ξ2, η2−u(∞)

2 〉+ψ(u(∞)
1 +u

(∞)
2) ≤ ψ(η1+η2), for all ηi ∈ Vi,

By the differential inclusions (3.18) and (3.19) we have

〈− 1

α
ξ1, η1−u(∞)

1 〉+〈− 1

α
ξ2, η2−u(∞)

2 〉+2ψ(u
(∞)
1 +u

(∞)
2) ≤ ψ(u

(∞)
1 +η2)+ψ(u

(∞)
2 +η1),

for all ηi ∈ Vi, hence

〈− 1

α
ξ1, η1 − u

(∞)
1 〉+ 〈− 1

α
ξ2, η2 − u

(∞)
2 〉+ ψ(u

(∞)
1 + u

(∞)
2)

≤ ψ(u
(∞)
1 + η2) + ψ(u

(∞)
2 + η1)− ψ(u

(∞)
1 + u

(∞)
2), for all ηi ∈ Vi.

An application of condition (a) concludes the proof of the wanted differential inclu-
sion.

Let us show the inclusion now under the assumption of condition (b). Without
loss of generality, we assume that ψ is differentiable at u(∞) with respect to V2. First
of all we define ψ̃(u1, u2) := ψ(u1+u2). Since ψ is convex, by an application of [102,
Corollary 10.11], we have

∂V1ψ(·+ u2)(u1) ≃ ∂u1ψ̃(u1, u2) = {ζ1 ∈ V ∗
1 : ∃ζ2 ∈ V ∗

2 :

(ζ1, ζ2)
T ∈ ∂ψ̃(u1, u2) ≃ ∂Hψ(u1 + u2)}.

Since ψ is differentiable at u(∞) with respect to V2, for any (ζ1, ζ2)
T ∈ ∂ψ̃(u1, u2) ≃

∂Hψ(u1+u2) we have necessarily ζ2 =
∂
∂V2

ψ(u(∞)) as the unique member of ∂V2ψ(·+
u
(∞)
1)(u

(∞)
2). Hence, the following inclusion must also hold

0 ∈
(
ξ1
ξ2

)

+ α
(

∂V1ψ(·+ u
(∞)
2)(u

(∞
1)× ∂V2ψ(·+ u

(∞)
1)(u

(∞)
2)

)

⊂
(
ξ1
ξ2

)

+ α∂V1×V2ψ̃(u1, u2)

≃ ξ + α∂Hψ(u
(∞)).

This shows that the algorithm in (3.13) converges and decreases the energy
J monotonically. Only under the technical condition (a) or (b) of the previous
theorem, which are in general not fulfilled, the convergence to minimizers of the
original functional (3.1) could be ensured.

54 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

3.2 Counterexample for Wavelet Decomposition

In this section we specify the previously introduced subspace correction method to
the case of an orthogonal wavelet space decomposition and for deblurring problems.
These specifications allow us to construct another more specific counterexample (cf.
Proposition 3.2.5) to show that convergence of the algorithm in (3.2) cannot be
obtained in general for non-smooth and non-additive problems, now for ψ(u) =
|Du|(Ω) with Ω being an open bounded set.

The successful use of wavelet-based multilevel algorithms for deblurring problems
where the ℓ1-norm of the wavelet coefficients is used as a regularization term, cf.
(1.21), was shown in [116]. There algorithm (1.23) was used with minor modifica-
tions, specifically by using Haar wavelets for deblurring (or deconvolution) problems,
where cyclic updates of the different resolution levels were combined with the pre-
conditioning effect of subband-specific parameters. The effectiveness of this method
was shown by solving multidimensional image deconvolution problems in 3D fluo-
rescence microscopy. We give a brief and intuitive explanation of the reason why
this multilevel method works so well for deblurring problems: wavelet space de-
compositions split the function space into orthogonal subspaces Vi. Note that now
T : L2(Ω) → L2(Ω) is just a convolution operator with kernel κ, i.e., Tu = κ ∗ u, or
a multiplier κ̂ in the Fourier domain, where the Vi’s represent nearly disjoint dyadic
subbands, and we have that all TVi are also nearly orthogonal, i.e., T ∗

Vi
TVî ≈ 0

for i 6= î, where TVi denotes the operator T restricted to the subspace Vi. Hence
each subiteration (1.24) of the algorithm in (1.23) is (nearly) restricted to one of
the Vi, independent of other subiterations, and converges fast because T ∗

Vi
TVi is a

well-conditioned operator. This is the case whenever the Fourier transform κ̂ is, for
example, a slowly decaying function on the subband associated with Vi, see Figure
3.1.

To gain maximal performance of the algorithm in (1.23) we need to introduce
preconditioner constants for each subiteration respectively, i.e., instead of consider-
ing I − T ∗

Vi
TVi we take iteration operators

I − 1

αi
T ∗
Vi
TVi ,

for αi ≥ ‖TVi‖2.

The main goal of this chapter is to transpose these observations on precondi-
tioning effects of alternating algorithms based on wavelet decompositions to the
deblurring model where the term ‖uΛ‖ℓ1(Λ) in (1.21) is substituted by the total
variation of the function u.

Our reason for expecting that the preconditioning effects observed by Vonesch
and Unser [116] for Haar wavelet-based regularization will take place also in to-
tal variation regularization of deblurring problems stems from the well-known near
characterization of BV in terms of wavelets [37, 38]: the BV -norm of a bivariate

3.2 Counterexample for Wavelet Decomposition 55

κ̂

V1V2 V2

Figure 3.1: We depict a slowly decaying envelope of the Fourier transform κ̂ of a kernel
κ. The spaces V1 and V2 are two orthogonal spaces, obtained by a wavelet decomposition
and associated to nearly disjoint subbands. Restricted on the subband associated to Vi, the
function κ̂, essentially representing the spectrum of the matrix TVi , can be intuitively un-
derstood as bounded from above and below, providing the well-conditioning of the operator
T ∗
Vi
TVi .

function u is in fact nearly equivalent to the ℓ1-norm of its bivariate Haar wavelet
coefficients uΛ. More precisely, there exist constants c1, c2 ∈ R

+ such that

c1‖uΛ‖ℓ1+δ ≤ ‖u‖L1(Ω) + |Du|(Ω) ≤ c2‖uΛ‖ℓ1 , for all u ∈ BV (Ω), (3.21)

and for all δ > 0. Actually these inequalities result in embeddings of BV with
respect to suitable Besov spaces:

B1
1,1 ⊂ BV ⊂ B1,w

1,1 .

We refer to [38] for more details.

Because of this observation and the above mentioned preconditioning mechanism
for a deblurring operator in connection with a wavelet space decomposition, we are
interested in the minimization of the functional (1.4) by using a suitably adapted
wavelet-based multilevel algorithm.

Let (Vi)i∈Z be a multiresolution analysis generated by a scaling function and let
ψ be a corresponding wavelet function. Then we obtain

L2(Ω) =
⋃

i∈Z

Vi = Vi ⊕
∞⊕

j=i

Wj =
⊕

j∈Z

Wj,

where Wj is the wavelet space corresponding to the j-th level generated by the basis

{ψλ : λ ∈ Λj},

56 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

and Λj denotes the set of indices for the j-th level, see [36, 41] for more details.
Moreover, Wj is the orthogonal complement of Vj in Vj+1, i.e., we have

Vj+1 = Vj ⊕Wj. (3.22)

In particular we may decompose L2(Ω) in the following way

L2(Ω) = V0 ⊕ V⊥
0 = V0 ⊕

(∞⊕

j=0

Wj

)

and denote V1 := V0 and V2 := V⊥
0 =

∞⊕

j=0

Wj. Associated with this wavelet de-

composition into two subspaces the minimization of (1.4) can be carried out by the
alternating subspace correction method (3.2).

3.2.1 Technical Issues

In the rest of the thesis we eventually work on a finite dimensional space by consid-
ering a finite regular mesh as a discretization of Ω. Thus we consider instead of the
continuous functional (1.4) its discrete approximation, for ease again denoted by J
in (3.24). In Section 2.7 we showed that such a discrete approximation Γ-converges
to the continuous functional and has the same singular nature as the continuous
problem. In particular, we recall, that discrete minimizers of (3.24), interpolated
by piecewise linear functions, converge in weak-∗-topology of BV to minimizers of
the functional (1.4) in the continuous setting. Of course, when dealing with numer-
ical solutions, only the discrete approach matters together with its approximation
properties to the continuous problem. However, the need of working in the discrete
setting is not only practical, it is also topological. In fact bounded sets in BV are
(only) weakly-∗-compact, and this property is fundamental for showing that certain
sequences have converging subsequences. Unfortunately, the weak-∗-topology of BV
is “too weak” for our purpose of obtaining conditions under which the limit of the
sequence produced by the subspace correction method is indeed the expected min-
imizer. Note further that in the discrete setting where topological issues are not a
concern anymore, also the dimension d can be arbitrary, contrary to the continuous
setting where the dimension d has to be linked to boundedness properties of the op-
erator T , see [113, property H2, pag. 134]. For simplicity reasons, as in the previous
section, we will limit ourselves to decompose our problem only into two orthogonal
subspaces V1 and V2, which is also now by no means a restriction, as a generaliza-
tion to a multiple decomposition is straightforward, see Remark 4.2.10. However, we
stress also that in our numerical experiments the beneficial effect of preconditioning
does not seem to improve significantly by considering multiple decompositions, see
Section 3.2.6.

3.2 Counterexample for Wavelet Decomposition 57

3.2.2 Notations

Our analysis is performed for a discrete approximation of the continuous functional
(1.4). Essentially we approximate functions u by their sampling on a regular grid
and their gradient Du by finite differences here denoted by ∇u.

It is sufficient to us to introduce our main notations for a discretization in [0, 1]d,
with d ∈ N, only by noting that they can be easily extended to more general spaces
in R

d. Since we are interested in a discrete setting we define the discrete d-orthotope
Ω = {x11 < . . . < x1N1

} × . . . × {xd1 < . . . < xdNd} ⊂ [0, 1]d. The considered function
spaces are H = R

N1×N2×...×Nd , where Ni ∈ N for i = 1, . . . , d. For u ∈ H we write
u = u(xi)i∈I with

I :=
d∏

k=1

{1, . . . , Nk}

and

u(xi) = u(x1i1 , . . . , x
d
id
),

where ik ∈ {1, . . . , Nk} and (xi)i∈I ∈ Ω. Then we endow H with the norm

‖u‖H = ‖u‖2 =
(
∑

i∈I

|u(xi)|2
)1/2

=

(
∑

x∈Ω

|u(x)|2
)1/2

.

We define the scalar product of u, v ∈ H as

〈u, v〉H =
∑

i∈I

u(xi)v(xi)

and the scalar product of p, q ∈ Hd as

〈p, q〉Hd =
∑

i∈I

〈p(xi), q(xi)〉Rd

with 〈y, z〉Rd =
∑d

j=1 yjzj for every y = (y1, . . . , yd) ∈ R
d and z = (z1, . . . , zd) ∈ R

d.
We will consider also other norms, in particular

‖u‖p =
(
∑

i∈I

|u(xi)|p
)1/p

, 1 ≤ p <∞,

and

‖u‖∞ = sup
i∈I

|u(xi)|.

We denote the discrete gradient ∇u by

(∇u)(xi) = ((∇u)1(xi), . . . , (∇u)d(xi))

58 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

with

(∇u)j(xi) =
{

u(x1i1 , . . . , x
j
ij+1, . . . , x

d
id
)− u(x1i1 , . . . , x

j
ij
, . . . , xdid) if ij < Nj

0 if ij = Nj

for all j = 1, . . . , d and for all i = (i1, . . . , id) ∈ I.
Let ϕ : R → R, we define for ω ∈ Hd

ϕ(|ω|)(Ω) =
∑

i∈I

ϕ(|ω(xi)|) =
∑

x∈Ω

ϕ(|ω(x)|),

where |y| =
√

y21 + . . .+ y2d. In particular we define the total variation of u by
setting ϕ(s) = s and ω = ∇u, i.e.,

|∇u|(Ω) :=
∑

i∈I

|∇u(xi)| =
∑

x∈Ω

|∇u(x)|.

Further we introduce the discrete divergence div : Hd → H defined, in analogy with
the continuous setting, by div = −∇∗ (∇∗ is the adjoint of the gradient ∇). The
discrete divergence operator is explicitly given by

(div p)(xi) =







p1(x1i1 , . . . , x
d
id
)− p1(x1i1−1, . . . , x

d
id
) if 1 < i1 < N1

p1(x1i1 , . . . , x
d
id
) if i1 = 1

−p1(x1i1−1, . . . , x
d
id
) if i1 = N1

+ . . .+







pd(x1i1 , . . . , x
d
id
)− pd(x1i1 , . . . , x

d
id−1) if 1 < id < Nd

pd(x1i1 , . . . , x
d
id
) if id = 1

−pd(x1i1 , . . . , xdid−1) if id = Nd,

(3.23)

for every p = (p1, . . . , pd) ∈ Hd and for all i = (i1, . . . , id) ∈ I. (Note that if
we considered discrete domains Ω which are not discrete d-orthotopes, then the
definitions of gradient and divergence operators should be adjusted accordingly.)
With these notations, we define the closed convex set

K :=
{
div p : p ∈ Hd, |p(x)|∞ ≤ 1 for all x ∈ Ω

}
,

where |p(x)|∞ = max
{
|p1(x)|, . . . , |pd(x)|

}
, and we denote by PK(u) = argminv∈K ‖u−

v‖2 the orthogonal projection onto K. We will often use the symbol 1 to indicate the
constant vector with entry values 1 and the symbol 1D to indicate the characteristic
function of the domain D ⊂ Ω.

3.2.3 Description of the Algorithm

Preconditioning

We are interested in solving by the multilevel algorithm in (3.2) the minimization
of the discrete functional J : H → R defined by

J (u) = ‖Tu− g‖22 + 2α|∇u|(Ω), (3.24)

3.2 Counterexample for Wavelet Decomposition 59

where T : H → H is a blur operator with kernel κ, g ∈ H is a given datum, and α > 0
is a fixed regularization parameter. Furthermore, it is convenient for us to assume
‖T‖ < 1, which is not a restriction, since a proper rescaling of the problem yields
the desired setting, and it does not change the minimization problem, see Remark
3.1.11. In order to guarantee the existence of minimizers for (3.24) we assume
condition (C), i.e., that J is coercive in H. It is well known that if 1 /∈ ker(T)
then this coercivity condition is satisfied, see [113, Proposition 3.1]. In addition, if
T is injective, for instance, if κ is a Gaussian or an averaging convolution kernel (see
Section 3.2.6), then (3.24) has an unique minimizer.

We can identify H with the sequences of samples (u(x))x∈Ω of a function u on
[0, 1]d, and with V1, the first scaling space of a multiresolution analysis, by means
of the map (u(x))x∈Ω → ∑

λ∈Λ1
u(xλ)ϕ1,λ, where ϕ1,λ is a properly dilated scaling

function, and (xλ)λ∈Λ is a suitable rearrangement of the nodes of the mesh Ω. More-
over, by property (3.22), we have the orthogonal splitting H = V1 = V0 ⊕W0. Of
course, we may obtain further levels of decomposition

H = Vj ⊕
(

0⊕

i=j

Wi

)

j ∈ Z
−.

For simplicity we restrict ourselves to a decomposition into two subspaces V1 := V0

and V2 := W0 only. As in Section 3.1 we introduce surrogate functionals on V1 ⊕ V2
for a ∈ Vi and for i = 1, 2 by

J s
i,αi

(u1 + u2, a) = J (u1 + u2) + αi‖ui − a‖22 − ‖T (ui − a)‖22, (3.25)

where α1, α2 are positive constants chosen as specified below in order to ensure the
convergence of the subminimization iteration

u
(n+1,ℓ+1)
i = arg min

ui∈Vi
J s
i,αi

(u1 + u2, u
(n+1,ℓ)
i), ℓ > 0, (3.26)

to a minimizer of the corresponding subproblem of (3.2), i.e.,

arg min
ui∈Vi

J (u1 + u2),

for i = 1, 2. Let us further define the synthesis operators S1 : ℓ2 → V1 via the
orthonormal basis for V1 and S2 : ℓ2 → V2 via the orthonormal basis for V2. That
is u1 = S1(uΛ1) and u2 = S2(uΛ2) for uΛ1 = (uλ)λ∈Λ1 denoting the scaling function
coefficients and uΛ2 = (uλ)λ∈Λ2 denoting the wavelet coefficients. Since S1, S2 are
isometries, we know that

‖TVi(ui − a)‖22 = ‖TViSi(uΛi − aΛi)‖22 and ‖ui − a‖22 = ‖uΛi − aΛi‖2ℓ2 ,

where a = S1(aΛ1) or a = S2(aΛ2). Because of these observations it makes sense to
choose

1 ≥ αi > ‖TViSi‖2 (3.27)

60 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

for i = 1, 2. Then we obtain

‖TVi(ui − a)‖22 = ‖TViSi(uΛi − aΛi)‖22 ≤ ‖TViSi‖2‖uΛi − aΛi‖2ℓ2 < αi‖ui − a‖22.

Notice that with constants αi as in (3.27), we have for n = 1, 2, . . . ,

J (u(n)) ≤ J s
2,α2

(u
(n,L)
1 + u

(n,M)
2 , u

(n−1,M)
2) ≤ J (u

(n,L)
1 + u

(n−1,M)
2)

≤ J s
1,α1

(u
(n,L)
1 + u

(n−1,M)
2 , u

(n−1,L)
1) ≤ J (u(n−1)).

(3.28)

An alternating minimization

A simple calculation shows that J s
i,αi

can be written in the following form:

J s
i,αi

(u1 + u2, a) = ‖T (u1 + u2)− g‖22 + 2α|∇(u1 + u2)|(Ω) + αi‖ui − a‖22
− ‖T (ui − a)‖22

= αi‖ui − zi‖22 + 2α|∇(u1 + u2)|(Ω) + φ(a, g, uî),

where

zi = πVia+
1

αi
πVi(T

∗(g − T (uî + a)))

and φ is a function depending only on a, g, uî, and î ∈ {1, 2} \ {i}. Hence,

arg min
u1∈V1

J s
1,α1

(u1 + u2, a) = arg min
u1∈V1

‖u1 − z1‖22 + 2β1|∇(u1 + u2)|(Ω) (3.29)

arg min
u2∈V2

J s
2,α2

(u1 + u2, a) = arg min
u2∈V2

‖u2 − z2‖22 + 2β2|∇(u1 + u2)|(Ω) (3.30)

where βi = α/αi, for i = 1, 2.
As suggested in the previous section here we solve again the subminimization

problems (3.29) and (3.30) by the iterative oblique thresholding algorithm, cf. The-
orem 3.1.4, which is specified below in our new setting. We focus, for instance, on the
minimization on V1, and similar statements hold symmetrically for the minimization
on V2.

Theorem 3.2.1 (Oblique thresholding). For u2 ∈ V2 and for z1 ∈ V1 the following
statements are equivalent:

(i) u∗1 = arg min
u1∈V1

‖u1 − z1‖22 + 2β1|∇(u1 + u2)|(Ω),

(ii) there exists η1 ∈ Range(πV2)
∗ ≃ V2 such that 0 ∈ u∗1 − (z − η1) + β1∂|∇(u∗1 +

u2)|(Ω),

(iii) there exists η1 ∈ V2 such that u∗1 = (I − Pβ1K)(z + u2 − η1)− u2 ∈ V1,

(iv) there exists η1 ∈ V2 such that η1 = πV2Pβ1K(η1 − (z + u2)).

3.2 Counterexample for Wavelet Decomposition 61

The proof of this statement is analogue to the one of Theorem 3.1.4. Note that
now H is a finite dimensional space and thus all the spaces are independent of the
particular attached norm and coincide with their duals. Hence all the statements
(i)− (iv) are equivalent, cf. Remark 3.1.5.

With this implementation the sequential algorithm in (3.13) produces for a fi-
nite number L,M ∈ N of inner iterations for each subspace respectively sequences
(u

(n,L)
1)n, (u

(n,M)
2)n and (z

(n,L)
1)n, (z

(n,M)
2)n such that

z
(n,L)
1 = u

(n,L−1)
1 +

1

α1

πV1(T
∗(g − T (u

(n,L−1)
1 + u

(n−1,M)
2))) (3.31)

z
(n,M)
2 = u

(n,M−1)
2 +

1

α2

πV2(T
∗(g − T (u

(n,L)
1 + u

(n,M−1)
2))). (3.32)

Note that

u
(n+1,L)
1 = argmin

u∈V1
‖u− z

(n+1,L)
1 ‖22 + 2β1|∇(u+ un2)|(Ω)

and

u
(n+1,M)
2 = argmin

u∈V2
‖u− z

(n+1,M)
2 ‖22 + 2β2|∇(u

(n+1,L)
1 + u)|(Ω).

3.2.4 Main Result

We do not pursue the analysis of the convergence of the algorithm in (3.13) in
our discrete and preconditioned setting, as its proof follows the lines of the one of
Theorem 3.1.12. We would like to investigate instead further equivalent conditions
for the limits of the sequences produced by this algorithm to be minimizers of J .
In order to do that, we need a characterization of solutions of the minimization
problem

argmin
u∈H

J (u),

where J is given as in (3.24). Such a characterization is provided in [113, Proposition
4.1] for the continuous setting. We specify these arguments for our discrete setting
and we highlight the significant differences with respect to the continuous one.

Characterization of Solutions

We make the following assumptions:

(Aϕ) ϕ : R → R is a convex function, nondecreasing in R
+ such that

(i) ϕ(0) = 0.

(ii) There exist c > 0 and b ≥ 0 such that cz − b ≤ ϕ(z) ≤ cz + b, for all
z ∈ R

+.

62 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

The particular example we have in mind is simply ϕ(s) = s, but we keep a more
general notation for uniformity with respect to the continuous version in [113, Propo-
sition 4.1]. In this section we are concerned with the following more general mini-
mization problem

argmin
u∈H

{Jϕ(u) := ‖Tu− g‖22 + 2αϕ(|∇u|)(Ω)} (3.33)

where g ∈ H is a datum and α > 0 is a fixed constant (in particular for ϕ(s) = s).

Proposition 3.2.2. Let ζ, u ∈ H. If the assumption (Aϕ) is fulfilled, then ζ ∈
∂Jϕ(u) if and only if there exists M = (M0, M̄) ∈ H × Hd, |M̄(x)|

2α
≤ c1 ∈ [0,+∞)

for all x ∈ Ω such that

〈M̄(x), (∇u)(x)〉Rd + 2αϕ(|(∇u)(x)|) + 2αϕ∗
1

(|M̄(x)|
2α

)

= 0 for all x ∈ Ω

(3.34)

T ∗M0 − div M̄ + ζ = 0 (3.35)

−M0 = 2(Tu− g), (3.36)

where ϕ∗
1 is the conjugate function of ϕ1 defined by ϕ1(s) = ϕ(|s|), for s ∈ R.

If additionally ϕ is differentiable and |(∇u)(x)| 6= 0 for x ∈ Ω, then we can
compute M̄ as

M̄(x) = −2α
ϕ′(|(∇u)(x)|)
|(∇u)(x)| (∇u)(x). (3.37)

Proof. It is clear that ζ ∈ ∂Jϕ(u) if and only if u = argminv∈H{Jϕ(v) − 〈ζ, v〉H},
and let us consider the following variational problem:

inf
v∈H

{Jϕ(v)− 〈ζ, v〉H} = inf
v∈H

{‖Tv − g‖22 + 2αϕ(|∇v|)(Ω)− 〈ζ, v〉H}. (P)

We denote such an infimum by inf(P). Now we compute (P∗) the dual of (P). Let
F : H → R, G : H×Hd → R, G1 : H → R, G2 : Hd → R, such that

F(v) = −〈ζ, v〉H
G1(w0) = ‖w0 − g‖22
G2(w̄) = 2αϕ(|w̄|)(Ω)
G(w) = G1(w0) + G2(w̄)

with w = (w0, w̄) ∈ H×Hd. Then the dual problem of (P) is given by (cf. Section
2.2.3)

sup
p∗∈H×Hd

{−F∗(Λ∗p∗)− G∗(−p∗)}, (P∗)

where Λ : H → H×Hd is defined by

Λv = (Tv, (∇v)1, . . . , (∇v)d)

3.2 Counterexample for Wavelet Decomposition 63

and Λ∗ is its adjoint. We denote the supremum in (P∗) by sup(P∗). Using the
definition of the conjugate function we compute F∗ and G∗. In particular

F∗(Λ∗p∗) = sup
v∈H

{〈Λ∗p∗, v〉H −F(v)} = sup
v∈H

〈Λ∗p∗ + ζ, v〉H =

{

0 if Λ∗p∗ + ζ = 0

∞ otherwise
,

where p∗ = (p∗0, p̄
∗) and

G∗(p∗) = sup
w∈H×Hd

{〈p∗, w〉H×Hd − G(w)}

= sup
w=(w0,w̄)∈H×Hd

{〈p∗0, w0〉H + 〈p̄∗, w̄〉Hd − G1(w0)− G2(w̄)}

= sup
w0∈H

{〈p∗0, w0〉H − G1(w0)}+ sup
w̄∈Hd

{〈p̄∗, w̄〉Hd − G2(w̄)}

= G∗
1(p

∗
0) + G∗

2(p̄
∗).

We have that

G∗
1(p

∗
0) =

〈
p∗0
4

+ g, p∗0

〉

H

and

G∗
2(p̄

∗) = 2αϕ∗
1

(|p̄∗|
2α

)

(Ω)

if |p̄∗(x)|
2α

∈ Domϕ∗
1, where ϕ

∗
1 is the conjugate function of ϕ1 defined by

ϕ1(s) := ϕ(|s|) s ∈ R.

See Section 2.2.2 for the explicit computation of these conjugate functions. So we
can write (P∗) in the following way

sup
p∗∈K

{

−
〈−p∗0

4
+ g,−p∗0

〉

H

− 2αϕ∗
1

(|p̄∗|
2α

)

(Ω)

}

, (3.38)

where

K =

{

p∗ ∈ H ×Hd :
|p̄∗(x)|
2α

∈ Domϕ∗
1 for all x ∈ Ω,Λ∗p∗ + ζ = 0

}

.

The function ϕ1 also fulfills assumption (Aϕ)(ii) (i.e., there exists c1 > 0, b ≥ 0 such
that c1z − b ≤ ϕ1(z) ≤ c1z + b, for all z ∈ R

+). The conjugate function of ϕ1 is
given by ϕ∗

1(s) = supz∈R{〈s, z〉 − ϕ1(z)}. By using the previous inequalities and by
noting that ϕ1 is even (i.e., ϕ1(z) = ϕ1(−z) for all z ∈ R) we have

(sup
z∈R

{〈s, z〉 − c1|z|+ b} ≥) sup
z∈R

{〈s, z〉 − ϕ1(z)} ≥ sup
z∈R

{〈s, z〉 − c1|z| − b}

=

{

−b if |s| ≤ c1

∞ otherwise
.

(3.39)

64 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

In particular, one can see that s ∈ Domϕ∗
1 if and only if |s| ≤ c1.

From Λ∗p∗ + ζ = 0 we obtain

〈Λ∗p∗, ω〉H + 〈ζ, ω〉H = 〈p∗,Λω〉Hd+1 + 〈ζ, ω〉H
= 〈p∗0, Tω〉H + 〈p̄∗,∇ω〉Hd + 〈ζ, ω〉H
= 0

for all ω ∈ H. Then, since 〈p̄∗,∇ω〉Hd = 〈− div p̄∗, ω〉H (see Section 3.2.2), we have

T ∗p∗0 − div p̄∗ + ζ = 0.

Hence we can write K in the following way

K =

{

p∗ = (p∗0, p̄
∗) ∈ H ×Hd :

|p̄∗(x)|
2α

≤ c1 for all x ∈ Ω, T ∗p∗0 − div p̄∗ + ζ = 0

}

.

We now apply the duality results from Theorem 2.2.5, since the functional in (P)
is convex, continuous with respect to Λv in H × Hd, and inf(P) is finite. Then
inf(P)= sup(P∗)∈ R and (P∗) has a solution M = (M0, M̄) ∈ K.

Let us assume that u is a solution of (P) and M is a solution of (P∗). From
inf(P)= sup(P∗) we get

‖Tu− g‖22 + 2αϕ(|∇u|)(Ω)− 〈ζ, u〉H = −
〈−M0

4
+ g,−M0

〉

H

− 2αϕ∗
1

(|M̄ |
2α

)

(Ω),

(3.40)

where M = (M0, M̄) ∈ H × Hd, |M̄(x)|
2α

≤ c1 and T ∗M0 − div M̄ + ζ = 0, which
verifies the direct implication of (3.35). In particular

−〈ζ, u〉H = 〈T ∗M0, u〉H − 〈div M̄, u〉H = 〈M0, Tu〉H + 〈M̄,∇u〉Hd ,

and

‖Tu− g‖22 + 〈M0, Tu〉H + 〈M̄,∇u〉Hd + 2αϕ(|∇u|)(Ω)

+

〈−M0

4
+ g,−M0

〉

H

+ 2αϕ∗
1

(|M̄ |
2α

)

(Ω) = 0.
(3.41)

Let us write (3.41) again in the following form

∑

x∈Ω

|(Tu− g)(x)|2 +
∑

x∈Ω

M0(x)(Tu)(x) +
∑

x∈Ω

d∑

j=1

M̄ j(x)(∇u)j(x)

+
∑

x∈Ω

2αϕ(|(∇u)(x)|) +
∑

x∈Ω

(−M0(x)

4
+ g(x)

)

(−M0(x))

+
∑

x∈Ω

2αϕ∗
1

(|M̄(x)|
2α

)

= 0.

(3.42)

Now we have

3.2 Counterexample for Wavelet Decomposition 65

1. 2αϕ(|(∇u)(x)|) +∑d
j=1 M̄

j(x)(∇u)j(x) + 2αϕ∗
1

(
|M̄(x)|
2α

)

≥ 2αϕ(|(∇u)(x)|) −
∑d

j=1 |M̄ j(x)||(∇u)j(x)|+ 2αϕ∗
1

(
|M̄(x)|
2α

)

≥ 0 by the definition of ϕ∗
1, since

2αϕ∗
1

(|M̄(x)|
2α

)

= sup
S∈Rd

{〈M̄(x), S〉Rd − 2αϕ(|S|)}

= sup
S=(S1,...,Sd)∈Rd

{
d∑

j=1

|M̄ j(x)||Sj| − 2αϕ(|S|)}

2. |(Tu − g)(x)|2 + M0(x)(Tu)(x) +
(

−M0(x)
4

+ g(x))(−M0(x)
)

= (((Tu)(x) −

g(x)))2+M0(x)((Tu)(x)− g(x))+
(
M0(x)

2

)2

=
(

((Tu)(x)− g(x)) + M0(x)
2

)2

≥
0.

Hence condition (3.41) reduces to

2αϕ(|(∇u)(x)|) +
d∑

j=1

M̄ j(x)(∇u)j(x) + 2αϕ∗
1

(|M̄(x)|
2α

)

= 0 for all x ∈ Ω

(3.43)

−M0(x) = 2((Tu)(x)− g(x)) for all x ∈ Ω. (3.44)

Conversely, if such an M = (M0, M̄) ∈ H × Hd with |M̄(x)|
2α

≤ c1 that fulfills
conditions (3.34)-(3.36) exists, it is clear from previous considerations that equation
(3.40) holds. Let us denote the functional on the left side of (3.40) by

P (u) := ‖Tu− g‖22 + 2αϕ(|∇u|)(Ω)− 〈ζ, u〉H

and the functional on the right side of (3.40) by

P ∗(M) := −
〈−M0

4
+ g,−M0

〉

H

− 2αϕ∗
1

(|M̄ |
2α

)

(Ω).

We know that the functional P is the functional of (P) and P ∗ is the functional of
(P∗). Hence inf P = inf(P) and supP ∗ = sup(P∗). Since P is convex, continuous
with respect to Λu in H × Hd, and inf(P) is finite, we know from Theorem 2.2.5
that inf(P)= sup(P∗)∈ R. We assume that M is no solution of (P∗), i.e., P ∗(M) <
sup(P∗), and u is no solution of (P), i.e, P (u) > inf(P). Then we have that

P (u) > inf (P) = sup (P∗) > P ∗(M).

Thus (3.40) is valid if and only if M is a solution of (P∗) and u is a solution of (P),
which amounts to saying that ζ ∈ ∂Jϕ(u).

66 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

If additionally ϕ is differentiable and |(∇u)(x)| 6= 0 for x ∈ Ω, we show that we
can compute M̄(x) explicitly. From equation (3.34) (resp. (3.43)) we have

2αϕ∗
1

(| − M̄(x)|
2α

)

= −〈M̄(x), (∇u)(x)〉Rd − 2αϕ(|(∇u)(x)|). (3.45)

From the definition of conjugate function we have

2αϕ∗
1

(| − M̄(x)|
2α

)

= 2α sup
t∈R

{〈 | − M̄(x)|
2α

, t

〉

− ϕ1(t)

}

= 2α sup
t≥0

{〈 | − M̄(x)|
2α

, t

〉

− ϕ1(t)

}

= 2α sup
t≥0

sup
S∈Rd

|S|=t

{〈−M̄(x)

2α
, S

〉

Rd

− ϕ1(|S|)
}

= sup
S∈Rd

{〈
−M̄(x), S

〉

Rd
− 2αϕ(|S|)

}
.

(3.46)

Now, if |(∇u)(x)| 6= 0 for x ∈ Ω, then it follows from (3.45) that the supremum is
taken in S = |(∇u)(x)| and we have

∇S(−〈M̄(x), S〉Rd − 2αϕ(|S|)) = 0,

which implies

M̄ j(x) = −2α
ϕ′(|(∇u)(x)|)
|(∇u)(x)| (∇u)j(x) j = 1, . . . , d,

and verifies (3.37). This finishes the proof.

Remark 3.2.3. (i) For ϕ(s) = s, the function ϕ1 from Proposition 3.2.2 turns
out to be ϕ1(s) = |s|. Its conjugate function ϕ∗

1 is then given by

ϕ∗
1(s

∗) = sup
s∈R

{〈s∗, s〉 − |s|} =

{

0 for |s∗| ≤ 1

∞ else
.

Hence condition (3.34) specifies as follows

〈M̄(x), (∇u)(x)〉Rd + 2α|(∇u)(x)| = 0

and, directly from the proof of Proposition 3.2.2, |M̄(x)| ≤ 2α for all x ∈ Ω.

(ii) We want to highlight a few important differences with respect to the continu-
ous case. Due to our definition of the gradient and its relationship with the
divergence operator − div = ∇∗ no boundary conditions are needed. There-
fore condition (10) of [113, Proposition 4.1] has no discrete correspondent in

3.2 Counterexample for Wavelet Decomposition 67

our setting. The continuous total variation of a function can be decomposed
into an absolute continuous part with respect to the Lebesgue measure and a
singular part, whereas no singular part appears in the discrete setting. There-
fore condition (6) and (7) of [113, Proposition 4.1] does not have a discrete
correspondent neither.

(iii) An interesting consequence of Proposition 3.2.2 is that the map Sα = (I−PαK)
is bounded, i.e., ‖Sα(zk)‖2 → ∞ if and only if ‖zk‖2 → ∞, for k → ∞. In
fact, since

Sα(z) = argmin
u∈H

‖u− z‖22 + 2α|∇u|(Ω),

from (3.35) and (3.36), we immediately obtain

Sα(z) = z − 1

2
div M̄,

and thus M̄ is uniformly bounded.

Theorem 3.2.4. Let (u(n))n be a sequence produced by (3.13). Then for a strongly

convergent subsequence of (u(n) = u
(n,L)
1 +u

(n,M)
2)n with limit u(∞) = u

(∞)
1 +u

(∞)
2 , we

have

u
(∞)
1 = argmin

u∈V1
‖u− z

(∞)
1 ‖22 + 2β1|∇(u+ u

(∞)
2)|(Ω), (3.47)

u
(∞)
2 = argmin

u∈V2
‖u− z

(∞)
2 ‖22 + 2β2|∇(u

(∞)
1 + u)|(Ω), (3.48)

z
(∞)
1 = u

(∞)
1 +

1

α1

πV1(T
∗(g − Tu(∞))), (3.49)

z
(∞)
2 = u

(∞)
2 +

1

α2

πV2(T
∗(g − Tu(∞))), (3.50)

where βi = α/αi, for i = 1, 2.
Moreover let us denote z(∞) = u(∞) + T ∗(g− Tu(∞)). Then, u(∞) is a minimizer

of (3.24) if and only if

u(∞) = argmin
u∈H

{F(u) := ‖u− z(∞)‖22 + 2α|∇u|(Ω)}. (3.51)

Before proving the previous statements we add some comments on the possibility
of verification of the minimality condition (3.51). Let F (u1, u2) = F(u1 + u2) for
u1 ∈ V1 and u2 ∈ V2. Then (3.47) and (3.48) imply

F (u
(∞)
1 , u

(∞)
2) ≤ arg min

v1∈V1,v2∈V2

{

F (v1, u
(∞)
2), F (u

(∞)
1 , v2)

}

. (3.52)

68 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

Unfortunately, (3.52) may not imply that u(∞) = u
(∞)
1 + u

(∞)
2 is a minimizer of

(3.51) and eventually of (3.24). We propose the following univariate counterexample,
which also shows that the algorithm in (3.13) may fail to converge to a minimizing
solution. For simplicity, we return to the continuous setting and we assume that Ω
is the interval [−1, 2], and that g = 1[0,1/2). We consider univariate Haar wavelets,
i.e., let ϕ0 = 1[0,1) and ψ0 = 1[0,1/2) − 1[1/2,1). Then we have

g =
1

2
ϕ0 +

1

2
ψ0.

Counterexample

The subspace correction method in (3.2) was introduced in [66] particularly for ℓ1-
minimization and total variation minimization. However it was only possible to
show convergence of this algorithm under some technical conditions which are in
general not fulfilled, see Theorem 3.1.12. Now in the following proposition we state
a very interesting counterexample, which shows that the subspace correction method
in (3.2) considered for the case of total variation minimization does not in general
converge to an expected minimizer.

Proposition 3.2.5. Let 0 < α < 1/8. In addition, let V1 be the subspace of
L2([−1, 2]) generated by {ϕ0(x − k) : k ∈ {−1, 0, 1}} and let V2 be the subspace of
L2([−1, 2]) generated by {ψj,k(x) = 2j/2ψ0(2

jx−k) : j ∈ Z
+∪{0}, k ∈ {−2j, . . . , 2j}},

then

u
(∞)
1 =

1− 4α

2
ϕ0, u

(∞)
2 =

1− 4α

2
ψ0,

which satisfy

arg min
u1∈V1
u2∈V2

F (u1, u2) < F (u
(∞)
1 , u

(∞)
2) ≤ arg min

v1∈V1
v2∈V2

{

F (v1, u
(∞)
2), F (u

(∞)
1 , v2)

}

, (3.53)

where

F (u1, u2) = F(u1 + u2) = ‖u1 + u2 − g‖22 + 2α|∇(u1 + u2)|([−1, 2])

=
∥
∥
∥u1 −

1

2
ϕ0

∥
∥
∥

2

2
+
∥
∥
∥u2 −

1

2
ψ0

∥
∥
∥

2

2
+ 2α|∇(u1 + u2)|([−1, 2]).

Proof. We prove the result by showing that the algorithm in (3.13), starting with

u(0) = 0, stops by converging to u(∞) = u
(∞)
1 + u

(∞)
2 in finite iterations, and that

(3.53) holds. Let u
(0)
1 = u

(0)
2 = 0. Then

u
(1)
1 = argmin

u∈V1

∥
∥
∥u− 1

2
ϕ0

∥
∥
∥

2

2
+ 2α|∇u|([−1, 2]). (3.54)

Then u
(1)
1 = aϕ0 for some a > 0 and

∥
∥
∥u− 1

2
ϕ0

∥
∥
∥

2

2
+ 2α|∇u|([−1, 2]) =

∥
∥
∥aϕ0 −

1

2
ϕ0

∥
∥
∥

2

2
+ 2αa|∇ϕ0|([−1, 2])

=
(

a− 1

2

)2

+ 4αa =
(

a+
4α− 1

2

)2

+ 2α− 4α2.

3.2 Counterexample for Wavelet Decomposition 69

Since α < 1/8, (3.54) attains its minimum when

a =
1− 4α

2
, i.e., u

(1)
1 =

1− 4α

2
ϕ0.

Now, we solve

u
(1)
2 = argmin

u∈V2

∥
∥
∥u− 1

2
ψ0

∥
∥
∥

2

2
+ 2α|∇(u

(1)
1 + u)|([−1, 2]). (3.55)

It is not hard to see that u
(1)
2 = bψ0 for some b > 0. If we assume b ≤ 1−4α

2
, then

∥
∥
∥u− 1

2
ψ0

∥
∥
∥

2

2
+ 2α|∇(u

(1)
1 + u)|([−1, 2])

=
(

b− 1

2

)2

+ 2α
(1− 4α

2
+ b+ 2b+

1− 4α

2
− b
)

=
(

b+
4α− 1

2

)2

+ 4α− 12α2 ≥ 4α− 12α2,

which is minimized when b = 1−4α
2

. On the other hand, if we assume b ≥ 1−4α
2

, then
since 0 < 1−8α

2
< 1−4α

2
≤ b,

∥
∥
∥u− 1

2
ψ0

∥
∥
∥

2

2
+ 2α|∇(u

(1)
1 + u)|([−1, 2])

=
(

b− 1

2

)2

+ 2α
(1− 4α

2
+ b+ 2b− 1− 4α

2
+ b
)

=
(

b+
8α− 1

2

)2

+ 4α− 16α2 ≥ 4α− 12α2,

which is also minimized when b = 1−4α
2

. Hence

u
(1)
2 =

1− 4α

2
ψ0.

Now, we solve

u
(2)
1 = argmin

u∈V1

∥
∥
∥u− 1

2
ϕ0

∥
∥
∥

2

2
+ 2α|∇(u+ u

(1)
2)|([−1, 2]).

It is easy to see that u
(2)
1 = aϕ0 for some a > 0. If we assume a ≤ 1−4α

2
, then since

1−4α
2

≤ 1
2
,

∥
∥
∥u− 1

2
ϕ0

∥
∥
∥

2

2
+ 2α|∇(u+ u

(1)
2)|([−1, 2])

=
(

a− 1

2

)2

+ 2α
(

a+
1− 4α

2
+ (1− 4α) +

1− 4α

2
− a
)

=
(

a− 1

2

)2

+ 4α(1− 4α) ≥ 4α− 12α2,

70 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

which is minimized when a = 1−4α
2

. On the other hand, if we assume a ≥ 1−4α
2

, then

∥
∥
∥u− 1

2
ϕ0

∥
∥
∥

2

2
+ 2α|∇(u+ u

(1)
2)|([−1, 2])

=
(

a− 1

2

)2

+ 2α
(

a+
1− 4α

2
+ (1− 4α) + a− 1− 4α

2

)

=
(

a+
4α− 1

2

)2

+ 4α− 12α2 ≥ 4α− 12α2,

which is also minimized when a = 1−4α
2

. We finally obtain

u
(2)
1 =

1− 4α

2
ϕ0 = u

(1)
1 .

Therefore, after only one step of the algorithm in (3.13), we have

u
(∞)
1 =

1− 4α

2
ϕ0, u

(∞)
2 =

1− 4α

2
ψ0.

It is now easy to see that u
(∞)
1 , u

(∞)
2 satisfy (3.52) and

F (u
(∞)
1 , u

(∞)
2) = 4α− 8α2.

However, if u = a1[0,1/2) =
a
2
ϕ0 +

a
2
ψ0, then

F(u) = ‖u− g‖22 + 2α|∇u|([−1, 2]) = (a− 1)2‖1[0,1/2)‖22 + 2α · 2a

=
1

4
(a− 1)2 + 4αa =

1

4
(a+ (8α− 1))2 + 4α− 16α2.

Since 0 < α < 1/8, if we set u0 = (1− 8α)1[0,1/2) =
1−8α

2
ϕ0 +

1−8α
2
ψ0, then

min
u1∈V1,u2∈V2

F (u1, u2) ≤ F(u0) = 4α− 16α2 < 4α− 8α2 = F(u
(∞)
1 + u

(∞)
2)

= F (u
(∞)
1 , u

(∞)
2).

Proposition 3.2.2 also provides us with the following useful characterization.

Corollary 3.2.6. The subdifferential of α∂|∇u|(Ω) is fully characterized by

α∂|∇u|(Ω) = {div(ξ) ∈ H : ‖ξ‖∞ ≤ α, 〈ξ(x),∇u(x)〉Rd + α|∇u|(x) = 0 for all x ∈ Ω}
= {div(ξ) ∈ H : − div(ξ) = PαK(−u− div(ξ))}.

Proof. If we consider T = I and φ(s) = s in Proposition 3.2.2, then ζ̃ ∈ α∂|∇u|(Ω)
if and only if ζ = 2(ζ̃ + u− g) ∈ ∂J (u) if and only if there exists (ξ0, ξ) ∈ H ×Hd

such that

3.2 Counterexample for Wavelet Decomposition 71

1. ‖ξ‖∞ ≤ α,

2. 〈ξ(x),∇u(x)〉Rd + α|∇u(x)| = 0 for all x ∈ Ω,

3. ζ̃ = div(ξ).

Hence,

α∂|∇u|(Ω) = {div(ξ) ∈ H : ‖ξ‖∞ ≤ α, 〈ξ(x),∇u(x)〉Rd+α|∇u|(x) = 0 for all x ∈ Ω}.
We also notice that

div(ξ) ∈ α|∇u|(Ω) if and only if 0 ∈ u− (u+ div(ξ)) + α∂|∇u|(Ω),
which is equivalent to

u = argmin
v

‖v − (u+ div(ξ))‖22 + 2α|∇v|(Ω),

that is,
−u = argmin

v
‖v + (u+ div(ξ))‖22 + 2α|∇v|(Ω).

By Remark 3.1.2, the latter optimality problem is equivalent to

−u = (I − PαK)(−u− div(ξ)),

that is,
− div(ξ) = PαK(−u− div(ξ)).

Therefore, we also have

α∂|∇u|(Ω) = {div(ξ) ∈ H : − div(ξ) = PαK(−u− div(ξ))}.

3.2.5 Proof of Theorem 3.2.4

For simplicity, we rename a convergent subsequence again by (u(n) = u
(n,L)
1 +u

(n,M)
2)n.

Equations (3.49) and (3.50) follow directly from (3.31) and (3.32) for n → ∞ by
using (3.16), which states the asymptotic regularity of the sequence, i.e.,
(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22

)

→ 0, n→ ∞.

Furthermore, it is also easy to see that for any u1 ∈ V1,

‖u(∞)
1 − z

(∞)
1 ‖22 + 2β1|∇u(∞)|(Ω) = lim

n→∞
‖u(n+1,L)

1 − z
(n+1,L)
1 ‖22

+ 2β1|∇(u
(n+1,L)
1 + u

(n,M)
2)|(Ω)

≤ lim
n→∞

‖u1 − z
(n+1,L)
1 ‖22 + 2β1|∇(u1 + u

(n,M)
2)|(Ω)

= ‖u1 − z
(∞)
1 ‖22 + 2β1|∇(u1 + u

(∞)
2)|(Ω).

72 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

Hence, we have

u
(∞)
1 = argmin

u∈V1
‖u− z

(∞)
1 ‖22 + 2β1|∇(u+ u

(∞)
2)|(Ω).

With the same argument one obtains (3.48). By Theorem 3.1.4 the optimality
conditions (3.47) and (3.48) are equivalent to

0 ∈ u
(∞)
1 − (z

(∞)
1 − η

(∞)
1) + β1∂|∇u(∞)|(Ω),

0 ∈ u
(∞)
2 − (z

(∞)
2 − η

(∞)
2) + β2∂|∇u(∞)|(Ω).

Then by Corollary 3.2.6 there exist ξ1, ξ2 such that

div(ξ1) = −u(∞)
1 + (z

(∞)
1 − η

(∞)
1), (3.56)

div(ξ2) = −u(∞)
2 + (z

(∞)
2 − η

(∞)
2), (3.57)

and with the following additional properties

1. ‖ξ1‖∞ ≤ β1, ‖ξ2‖∞ ≤ β2 and

2. 〈ξi(x),∇u(∞)(x)〉Rd + βi|∇u(∞)(x)| = 0 for all x ∈ Ω and i = 1, 2.

Multiplying (3.56) by α1 and (3.57) by α2 yields

−α1u
(∞)
1 + α1z

(∞)
1 − α1η

(∞)
1 − α1 div(ξ1) = 0,

−α2u
(∞)
2 + α2z

(∞)
2 − α2η

(∞)
2 − α2 div(ξ2) = 0.

If we sum up the last two equations we obtain

−α1u
(∞)
1 +α1z

(∞)
1 −α2u

(∞)
2 +α2z

(∞)
2 −div(α1ξ1)−div(α2ξ2)−(α1η

(∞)
1 +α2η

(∞)
2) = 0.

(3.58)
From Theorem 3.1.4 we have that

η
(∞)
1 = πV2Pβ1K(η

(∞)
1 − (z

(∞)
1 + u

(∞)
2)) and η

(∞)
2 = πV1Pβ2K(η

(∞)
2 − (z

(∞)
2 + u

(∞)
1))

and it follows then from (3.56), (3.57), and Corollary 3.2.6 that

α1η
(∞)
1 = πV2(− div(α1ξ1)) = πV2Pβ1K(−u(∞) − div(α1ξ1)) (3.59)

α2η
(∞)
2 = πV1(− div(α2ξ2)) = πV1Pβ2K(−u(∞) − div(α2ξ2)). (3.60)

Plugging (3.59) and (3.60) in (3.58) and using the definition of z
(∞)
1 and z

(∞)
2 , see

(3.49) and (3.50), yields

0 = −T ∗(Tu(∞) − g)− div(α1ξ1)− div(α2ξ2) + (πV2 div(α1ξ1) + πV1 div(α2ξ2))

= −T ∗(Tu(∞) − g)− (πV1 div(α1ξ1) + πV2 div(α2ξ2)).

Therefore, if there exists ξ such that div(ξ) ∈ α∂|∇u(∞)|(Ω) and
div(ξ) = πV1 div(α1ξ1) + πV2 div(α2ξ2), (3.61)

then ξ also satisfies

3.2 Counterexample for Wavelet Decomposition 73

1. ‖ξ‖∞ ≤ α,

2. 〈ξ(x),∇u(∞)(x)〉Rd + α|∇u(∞)|(x) = 0 for all x ∈ Ω,

3. T ∗ξ0 − div(2ξ) = 0,

4. −ξ0 = 2(Tu(∞) − g).

The existence of such ξ is a necessary and sufficient condition for u(∞) to be a
minimizer by Proposition 3.2.2. Then ξ satisfies

−u(∞) + z(∞) = T ∗(g − Tu(∞)) = −α1u
(∞)
1 + α1z

(∞)
1 − α2u

(∞)
2 + α2z

(∞)
2 = div(ξ),

that is,
−z(∞) = −u(∞) − div(ξ) and div(ξ) ∈ α|∇u(∞)|(Ω),

where z(∞) := u(∞) + T ∗(g − Tu(∞)). Note, that for i = 1, 2,

z
(∞)
i 6= πViz

(∞), and − αiu
(∞)
i + αiz

(∞)
i = −u(∞)

i + πViz
(∞).

By div(ξ) ∈ α∂|∇u(∞)|(Ω) and Corollary 3.2.6, this is equivalent to

u(∞) − z(∞) = − div(ξ) = PαK(−u(∞) − div(ξ)) = PαK(−z(∞)).

Hence,

−u(∞) = (I − PαK)(−z(∞)) = argmin
u

‖u+ z(∞)‖22 + 2α|∇u|(Ω),

which proves the theorem.
The proof of Theorem 3.2.4 provides us with another characterization of u(∞)

being a minimizer of (3.24) by ξ1, ξ2 in (3.56), (3.57).

Corollary 3.2.7. Let α1 ≤ 1, α2 ≤ 1. The limit u(∞), obtained in Theorem 3.2.4
b), is a minimizer of (3.24) if and only if there exist ξ1, ξ2 in (3.56), (3.57) with
div(α1ξ1) = div(α2ξ2).

Proof. First let us prove the statement for α1 = α2 = 1: if u(∞) is a minimizer of
(3.24), then Theorem 3.2.4 and Remark 3.1.2 say that

u(∞) = (I − PαK)(z
(∞)).

Since α1 = α2 = 1, we obtain

z
(∞)
1 = πV1z

(∞), z
(∞)
2 = πV2z

(∞).

We then can rephrase this in two different ways as follows:

u
(∞)
1 = (I − PαK)(z

(∞)
1 + u

(∞)
2 − (u

(∞)
2 − z

(∞)
2))− u

(∞)
2 ,

or u
(∞)
2 = (I − PαK)(z

(∞)
2 + u

(∞)
1 − (u

(∞)
1 − z

(∞)
1))− u

(∞)
1 .

74 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

By Theorem 3.1.4, we can take

η
(∞)
1 = u

(∞)
2 − z

(∞)
2 , η

(∞)
2 = u

(∞)
1 − z

(∞)
1 .

This implies div(ξ1) = div(ξ2) from (3.56) and (3.57). On the other hand, if
div(ξ1) = div(ξ2), then (3.61) implies that u(∞) is a minimizer of (3.24).

Now let us prove the statement for α1, α2 ≤ 1: suppose that u(∞) is a minimizer
of (3.24). Then Theorem 3.2.4 says that

u(∞) = (I − PαK)(z
(∞))

if and only if

div(ξ) = −u(∞) + z(∞) ∈ α∂|∇u(∞)|(Ω) for some ξ.

By the above considerations, we know that there exist η∞,1
1 , η∞,1

2 such that

η∞,1
1 = u

(∞)
2 −πV2z(∞) = α2u

(∞)
2 −α2z

(∞)
2 , η∞,1

2 = u
(∞)
1 −πV1z(∞) = α1u

(∞)
1 −α1z

(∞)
1

and
−u(∞)

1 + (πV1z
(∞) − η∞,1

1) = div(ξ) = −u(∞)
2 + (πV2z

(∞) − η∞,1
2).

Let η∞,αi
i =

η∞,1
i

αi
, ξαii = ξ

αi
for i = 1, 2. Then

div(ξα1
1) = −u(∞)

1 + (z
(∞)
1 − η∞,α1

1),

div(ξα2
2) = −u(∞)

2 + (z
(∞)
2 − η∞,α2

2).

Moreover one can see that div(ξαii) ∈ βi∂|∇u(∞)|(Ω) for i = 1, 2. Hence if we let
ξ1 = ξα1

1 and ξ2 = ξα2
2 , then div(α1ξ1) = div(ξ) = div(α2ξ2).

On the other hand, if there exist ξ1, ξ2 satisfying div(α1ξ1) = div(α2ξ2) in (3.56),
(3.57), then by (3.61), we know that the limit u(∞) is a minimizer of (3.24).

3.2.6 Numerical Validation

In this section we illustrate the performance of the algorithm in (3.13) for the min-
imization of (3.24) when T is a blur operator with averaging kernel κ supported
on 3 × 3 pixels and uniform values 1/9. The function space is split into N ∈ N

orthogonal spaces by a wavelet space decomposition such that

H = V2−N ⊕
(

0⊕

j=2−N

Wj

)

.

In addition, we set V1 := V2−N and Vi := W2−i for i = 2, 3, . . . ,N . Note that for
N = 1 we have that V1 = H and thus we have no splitting. In order to gain maximal
performance, the preconditioner constants are always chosen as

αi = ‖TViSi‖2, (3.62)

3.2 Counterexample for Wavelet Decomposition 75

for i = 1, . . . ,N , as already discussed in detail for N = 2 in Section 3.2.3.
In our numerical examples we only consider decompositions by using Haar wavelets.

In this case it is easy to see that the preconditioner constant for the scale space
V2−N is simply α1 = ‖T‖ and the preconditioner constants for the wavelet spaces
Wj, j = 0, . . . , 2−N , are strictly smaller than the norm of T .

The implementation of the algorithm is done as suggested and discussed in [66].
That is the subiterations in (3.13) are solved by computing the minimizers by means
of oblique thresholding, cf. Theorem 3.1.4.

Computation of the Oblique Thresholding (OT)

To solve the subiterations in (3.13) we compute the minimizer by means of oblique

thresholding. More precisely, let us denote u2 = u
(n)
2 , u1 = u

(n+1,ℓ+1)
1 , and z1 =

u
(n+1,ℓ)
1 + 1

α1
πV1T

∗(g − Tu2 − Tu
(n+1,ℓ)
1). We shall compute the minimizer u1 of the

first subminimization problem by

u1 = (I − Pβ1K)(z1 + u2 − η1)− u2 ∈ V1

for an η1 ∈ V2, which fulfills

η1 = πV2Pβ1K(η1 − z1 − u2).

Hence the element η1 ∈ V2 is a limit of the corresponding fixed point iteration

η
(0)
1 ∈ V2, η

(m+1)
1 = πV2Pβ1K(η

(m)
1 − z1 − u2), m ≥ 0. (3.63)

Here K is defined as in Section 3.2.2, i.e.,

K =
{
div p : p ∈ Hd, |p(x)|∞ ≤ 1 for all x ∈ Ω

}
.

To compute the orthogonal projection onto β1K in the oblique thresholding we
use an algorithm proposed by Chambolle in [23]. His algorithm is based on con-
siderations of the convex conjugate of the total variation and on exploiting the
corresponding optimality condition. It amounts to compute Pβ1K(g) approximately
by β1 div p

(n), where p(n) is the n-th iterate of the following semi-implicit gradient
descent algorithm:

Choose τ > 0, let p(0) = 0 and, for any n ≥ 0, iterate

p(n+1)(x) =
p(n)(x) + τ(∇(div p(n) − g/β1))(x)

1 + τ |(∇(div p(n) − g/β1))(x)|
.

For τ > 0 sufficiently small, i.e., τ < 1/8, the iteration β1 div p
(n) was shown

to converge to Pβ1K(g) as n → ∞ (compare [23, Theorem 3.1]). Let us stress
that we propose here this algorithm just for the ease of its presentation and its
implementation; its choice for the approximation of projections is of course by no
means a restriction and one may want to implement other recent, and perhaps faster
strategies, e.g., [26, 46, 69, 96, 119].

76 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

Experiments

The experiments we include in this chapter are produced in Matlab with the imple-
mentation described above of the algorithm in (3.13). In our examples we stop the
algorithm as soon as the energy J reaches a significant level, i.e.,

J (u∗) ≤ ǫ, (3.64)

where u∗ denotes the first iterate for which (3.64) is fulfilled and ǫ is an estimate of
the minimal energy.

In Figure 3.2 we show an image of size 156× 156 pixels, which was corrupted by
the blur operator T as above. In order to deblur this image we split the function
space of the image into orthogonal subspaces via a wavelet space decomposition and
compute its solution by the algorithm with α = 10−5 and stopping criterion (3.64)
with ǫ = 0.04. The computed result for 4 subspaces is shown in Figure 3.2 on the
right hand side.

Blurred image Restored image

Figure 3.2: On the left we depict an image, blurred with an averaging kernel. On the right
we show the corresponding solution computed on 4 orthogonal subspaces by the algorithm
in (3.13) with α = 10−5 and stopping criterion (3.64) with ǫ = 0.04.

N 1 2 3 4 5 6
Iterations 525 12 8 6 6 6
CPU (s) 40.80 2.59 2.37 2.34 3.29 4.05

Table 3.1: Performance of the wavelet decomposition algorithm in (3.13) for image de-
blurring (uniform kernel) with energy-stopping criterion (3.64) with ǫ = 0.04: the number
of iterations and CPU time in seconds are shown with respect to the number N of subspace
decompositions.

In the same setting as above, we solve this specific deblurring problem with the
algorithm in (3.13) for different numbers of subspaces and compare its performance

3.2 Counterexample for Wavelet Decomposition 77

with respect to the needed iterations and computational time in Table 3.1. Note
that for N = 1 we solve this problem without any decomposition on the whole space
H. We see in Table 3.1 that the performance in this case is clearly the worst. When
we solve the same problem with a decomposition into two or more wavelet spaces
only a very few iterations are needed to reach the stopping criterion. Additionally,
a decomposition into only 2 subspaces leads to a significant speed-up concerning the
computational time, cf. also Figure 3.5.

By using Lemma 3.2.7 we check for a splitting into 2 orthogonal subspaces
whether the sequential algorithm numerically converges to a minimizer by looking
at

‖ div(α1ξ
(n)
1)− div(α2ξ

(n)
2)‖, (3.65)

where

div(ξ
(n)
1) = −u(n)1 + (z

(n)
1 − η

(n)
1)

div(ξ
(n)
2) = −u(n)2 + (z

(n)
2 − η

(n)
2).

In Figure 3.3 we plot the decay of this norm discrepancy, indicator of the distance
from convergence to a minimizer, with respect to the iterations n. The indicator nu-
merically converges to zero for n increasing and the algorithm numerically converges
to a minimizer of the original problem.

0 2 4 6 8 10 12
2.5

3

3.5

4

4.5

5

5.5

6
x 10

−5 ||div(α
1
 ξ

1
) − div(α

2
 ξ

2
) ||

Iterations
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7
x 10

−5 ||div(α
1
 ξ

1
) − div(α

2
 ξ

2
) ||

Iterations

Figure 3.3: We plot ‖ div(α1ξ
(n)
1)− div(α2ξ

(n)
2)‖ for the problem of Figure 3.2 (left) and

Figure 3.4 (right) in view of Lemma 3.2.7 in order to check whether the algorithm is indeed
converging.

In Figure 3.4 we depict another example of an image deblurring problem, where
the image of size 279× 285 pixels was blurred by the averaging kernel from above.
The image is again recovered via the algorithm in (3.13) by splitting the function
space H into orthogonal wavelet spaces. We take as the stopping criterion (3.64)
with ǫ = 0.058 and as a regularization parameter α = 10−5. In Table 3.2 we show
the behaviour of the algorithm for different numbers of subspaces.

78 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

Blurred image Restored image

Figure 3.4: On the left we show an image, blurred by an averaging kernel. On the right
we show the corresponding solution computed alternating on 3 orthogonal subspaces by the
algorithm in (3.13) with α = 10−5 and stopping criterion (3.64) with ǫ = 0.058.

N 1 2 3 4 5 6
Iterations 405 10 8 7 7 7
CPU (s) 86.94 8.37 11.37 13.75 17.59 22.24

Table 3.2: Performance of the wavelet decomposition algorithm in (3.13) for image de-
blurring (uniform kernel) with energy-stopping criterion (3.64) with ǫ = 0.058: the number
of iterations and CPU time in seconds are shown with respect to the number N of subspace
decompositions.

Again we see from the numerical results that with a decomposition into 2 sub-
spaces the speed of convergence increases dramatically as depicted in Figure 3.5.

Let us display in Figure 3.6 also the “distance” between the obtained estimate
and the original image. Therefore we recall the definition of Signal-to-Error-Ratio
Gain [116] given by

SERG = 20 log10
‖g − uorg‖
‖u∗ − uorg‖

,

where uorg denotes the original image before blurring. In Figure 3.6 we show the evo-
lution of this measure with respect to the time need for both mentioned deblurring
problems for N = 1 (no splitting) and for N = 2 (splitting into 2 subspaces).

3.2 Counterexample for Wavelet Decomposition 79

0 5 10 15 20 25 30 35 40 45
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time

E
ne

rg
y

Energy versus time

decomposition into 2 subspaces
no decomposition

(a)

0 10 20 30 40 50 60 70 80 90
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

E
ne

rg
y

Energy versus time

decomposition into 2 subspaces
no decomposition

(b)

0 2 4 6 8 10 12
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time

E
ne

rg
y

Energy versus time

decomposition into 2 subspaces
no decomposition

(c)

0 5 10 15 20 25 30
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

E
ne

rg
y

Energy versus time

decomposition into 2 subspaces
no decomposition

(d)

Figure 3.5: We show for N = 1 and N = 2 the decay of the energy. For the deblurring
problem of Figure 3.2 the decays are plotted in (a) and zoomed in to the first 10 seconds
in (c). We depict the decays of the energies for the deblurring problem of Figure 3.4 in
(b) and zoomed in to the first 25 seconds in (d).

80 Chapter 3: Subspace Correction for Non-smooth and Non-additive Problems

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

S
E

R
G

SERG versus time

decomposition into 2 subspaces
no decomposition

(a)

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

S
E

R
G

SERG versus time

decomposition into 2 subspaces
no decomposition

(b)

Figure 3.6: We show for N = 1 and N = 2 the evolution of the quality measure SERG:
in (a) for the deblurring problem of Figure 3.2 and in (b) for the deblurring problem of
Figure 3.4.

Chapter 4

Domain Decomposition for Total
Variation Minimization

This chapter is dedicated to overlapping and non-overlapping domain decomposition
methods for total variation minimization. In order to successfully show convergence
of these methods we have to take technical issues into account, which we describe
in Section 4.1. In Section 4.2 we will introduce and investigate sequential and par-
allel overlapping domain decomposition methods [64]. In Section 4.3 we specify the
subspace correction method recalled in Section 3.1 to a non-overlapping domain de-
composition method for total variation minimization, as already proposed in [66],
and we show that in a discrete setting the algorithm always converges to an expected
minimizer, as reported in [75] and inspired by the convergence proof of the overlap-
ping domain decomposition method presented in Section 4.2. The subminimization
problems in the overlapping and non-overlapping domain decomposition methods
are solved by the iterative oblique thresholding, see Theorem 3.1.4, which is based
on an iterative proximity map algorithm and the computation of a Lagrange multi-
plier by a fixed point iteration. In Section 4.4 we report on a more efficient approach
as appearing in [76].

4.1 Technical Issues

Our analysis of the proposed domain decomposition methods is performed, as in
Section 3.2, for a discrete approximation of the continuous functional (1.4), which
we denote for ease again by J in (4.1). In Section 3.2.1 we summerized the main
properties and advantages of such a discrete approximation. In particular, we noted,
that the discrete approach has the virtues of being practical for numerical imple-
mentations, of correctly approximating the continuous setting, and of retaining the
major features, which makes the problem interesting. Let us point out that in this
section we use traces of bounded variation of functions, which are not continuous
with respect to the weak-∗-topology of BV . However, they are indeed continuous
in a discrete setting, which has only strong topology. Therefore the discrete setting

81

82 Chapter 4: Domain Decomposition for Total Variation Minimization

eventually provides us with a framework in which we are able to prove successfully in
Theorem 4.2.8, Theorem 4.2.12, Theorem 4.3.1, and Theorem 4.3.4 that sequential
and parallel domain decomposition methods for total variation minimization indeed
converge to minimizers of J , which constitute the main result of this chapter. In
light of the counterexamples mentioned in the previous chapter, we reiterate the
relevance of this result. Nevertheless, it is important to mention that there are
also other very recent attempts of addressing domain decomposition strategies to
functionals with a total variation constraint, which claim to work sufficiently well in
practice, but without any sufficient theoretical convergence analysis [88, 121]. One
particular interesting approach was developed in the diploma thesis of Jahn Müller
[88]. There a primal-dual Newton method was used in order to solve the submin-
imization problem on each subdomain. The numerical results look very promising
and show a significant computational speed up. However, it was not possible to
show that the algorithm is indeed converging to the expected minimizer. Another
domain decomposition strategy for total variation appeared in [121], but in order to
obtain a convergence result it was needed to regularize the problem.

For ease of presentation, and in order to avoid unnecessary technicalities, we
limit our analysis to splitting the problem into two subdomains Ω1 and Ω2. This
is by no means a restriction. The generalization to multiple domains comes quite
natural in our specific setting, see also Remark 4.2.10.

Since we are interested in a discrete setting we use throughout this chapter the
notations provided in Section 3.2.2.

4.2 The Overlapping Domain Decomposition Al-

gorithm

Similar as in Section 3.2, we are interested in the minimization of the functional

J (u) := ‖Tu− g‖22 + 2α |∇(u)| (Ω), (4.1)

where T : H → H is now any bounded linear operator, g ∈ H is a datum, and α > 0
is a fixed constant. We recall that in order to guarantee the existence of minimizers
for (4.1) we assume condition (C), i.e., that J is coercive in H.

Now, instead of minimizing (4.1) on the whole domain, we decompose Ω into
two overlapping subdomains Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 6= ∅, and a
certain splitting property for the total variation, i.e.,

|∇u|(Ω) = |∇u|Ω1
|(Ω1) + c1(u|(Ω2\Ω1)∪Γ1

),

|∇u|(Ω) = |∇u|Ω2
|(Ω2) + c2(u|(Ω1\Ω2)∪Γ2

),
(4.2)

where c1 and c2 are suitable functions that depend only on the restrictions u|(Ω2\Ω1)∪Γ1

and u|(Ω1\Ω2)∪Γ2
respectively, is fulfilled. Note that formula (4.2) is the discrete anal-

ogous of (2.6) in the continuous setting. The simplest examples of discrete domains

4.2 The Overlapping Domain Decomposition Algorithm 83

with such a property are discrete d-dimensional rectangles (d-orthotopes). For in-
stance, with our notations from Section 3.2.2, it is easy to check that for d = 1 and
for Ω being a discrete interval, one computes c1(u|(Ω2\Ω1)∪Γ1

) = |∇u|(Ω2\Ω1)∪Γ1
|((Ω2 \

Ω1) ∪ Γ1), c2(u|(Ω1\Ω2)∪Γ2
) = |∇u|(Ω1\Ω2)∪Γ2

|((Ω1 \ Ω2) ∪ Γ2)); it is straightforward to
generalize the computation to d > 1. Hence, for ease of presentation, we will assume
to work with d-orthotope domains, also noting that such decompositions are already
sufficient for any practical use in image processing, and stressing that the results can
be generalized also to subdomains with different shapes as long as (4.2) is satisfied.
However, for consistency of the definitions of gradient and divergence, we assume
that also the subdomains Ωi are discrete d-orthotopes as well as Ω, stressing that
this is by no means a restriction, but only for ease of presentation. Due to this
overlapping decomposition of the domain Ω, the function space H is split into two
closed subspaces Vj = {u ∈ H : supp(u) ⊂ Ωj}, for j = 1, 2. Note that H = V1 + V2
is not a direct sum of V1 and V2, but just a linear sum of subspaces. Thus any u ∈ H
has a nonunique representation

u(x) =







u1(x) x ∈ Ω1 \ Ω2

u1(x) + u2(x) x ∈ Ω1 ∩ Ω2

u2(x) x ∈ Ω2 \ Ω1

, ui ∈ Vi, i = 1, 2. (4.3)

We denote by Γ1 the interface between Ω1 and Ω2 \ Ω1 and by Γ2 the interface
between Ω2 and Ω1 \Ω2 (the interfaces are naturally defined in the discrete setting).

We introduce the trace operator of the restriction to a boundary Γi

Tr|Γi : Vi → R
Γi , i = 1, 2

with Tr|Γi vi = vi|Γi , the restriction of vi on Γi. Note that RΓi is as usual the set of
maps from Γi to R. The trace operator is clearly a linear and continuous operator.
We additionally fix a bounded uniform partition of unity (BUPU) {χ1, χ2} ⊂ H such
that

(a) Tr|Γi χi = 0 for i = 1, 2,

(b) χ1 + χ2 = 1,

(c) suppχi ⊂ Ωi for i = 1, 2,

(d) max{‖χ1‖∞, ‖χ2‖∞} = cχ <∞.

We would like to solve

argmin
u∈H

J (u) (4.4)

by picking an initial V1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, e.g., ũ

(0)
i = 0, i = 1, 2, and

84 Chapter 4: Domain Decomposition for Total Variation Minimization

iterate 





u
(n+1)
1 ≈ argmin v1∈V1

Tr|Γ1
v1=0

J (v1 + ũ
(n)
2)

u
(n+1)
2 ≈ argmin v2∈V2

Tr|Γ2
v2=0

J (u
(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(4.5)

Note that we are minimizing over functions vi ∈ Vi for i = 1, 2 that vanish on
the interior boundaries, i.e., Tr|Γi vi = 0. Moreover u(n) is the sum of the local

minimizers u
(n)
1 and u

(n)
2 , which are not uniquely determined on the overlapping

part. Therefore we introduced a suitable correction by χ1 and χ2 in order to force
the subminimizing sequences (u

(n)
1)n and (u

(n)
2)n to remain uniformly bounded. This

issue will be explained in detail below, see Lemma 4.2.6. From the definition of χi,
i = 1, 2, it is clear that

u
(n+1)
1 + u

(n+1)
2 = u(n+1) = (χ1 + χ2)u

(n+1) = ũ
(n+1)
1 + ũ

(n+1)
2 .

Note that in general u
(n)
1 6= ũ

(n)
1 and u

(n)
2 6= ũ

(n)
2 . The realization of the approximate

solution to the individual subspace minimizations, discussed in the next section,
follows basically the same idea as the one provided in Section 3.1.1 for the general
subspace correction algorithm in (3.2).

4.2.1 Local Minimization by Lagrange Multipliers

Let us consider, for example, the subspace minimization on Ω1

arg min
v1∈V1

Tr|Γ1
v1=0

J (v1 + u2) = arg min
v1∈V1

Tr|Γ1
v1=0

‖Tv1 − (g − Tu2)‖22 + 2α|∇(v1 + u2)| (Ω).

(4.6)

We observe that
{

u ∈ H : Tr|Γ1
u = Tr|Γ1

u2, J (u) ≤ C
}

⊂ {J ≤ C}. By assump-

tion (C) these sets are bounded and hence the minimization problem (4.6) has
solutions.

In order to realize an approximate solution to (4.6) we use the following algo-

rithm: for u
(0)
1 = ũ

(0)
1 ∈ V1,

u
(ℓ+1)
1 = arg min

u1∈V1
Tr|Γ1

u1=0

J s
1 (u1 + u2, u

(ℓ)
1), ℓ ≥ 0, (4.7)

where J s
1 is the surrogate functional of J defined as in (3.4), i.e., for a, u1 ∈ V1,

u2 ∈ V2 we have

J s
1 (u1 + u2, a) := J (u1 + u2) + ‖u1 − a‖22 − ‖T (u1 − a)‖22. (4.8)

4.2 The Overlapping Domain Decomposition Algorithm 85

Note that J s
1 can be written in the following form

J s
1 (u1+u2, a) = ‖u1−(a+(T ∗(g−Tu2−Ta))|Ω1

)‖22+2α |∇(u1 + u2)| (Ω)+Φ(a, g, u2),

with Φ being a function of a, g, u2 only. Additionally in (4.7) we can restrict the
total variation on Ω1 only, since we have

|∇(u1 + u2)| (Ω) =
∣
∣
∣∇(u1 + u2)|Ω1

∣
∣
∣ (Ω1) + c1(u2|(Ω2\Ω1)∪Γ1

), (4.9)

where we used (4.2) and the assumption that u1 vanishes on the interior boundary
Γ1. Hence (4.7) is equivalent to

arg min
u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + u2, u

(ℓ)
1) = arg min

u1∈V1
Tr|Γ1

u1=0

‖u1 − z1‖22 + 2α
∣
∣
∣∇(u1 + u2)|Ω1

∣
∣
∣ (Ω1),

(4.10)

where z1 = u
(ℓ)
1 + (T ∗(g − Tu2 − Tu

(ℓ)
1))|Ω1

. Similarly the same arguments work for
the second subproblem.

Let us now clarify how to practically compute u
(ℓ+1)
1 for a given u

(ℓ)
1 . To do so

we need to recall a useful result from convex analysis.
We observe that in order to solve the subminimization problems (4.10) we have

to solve a constrained minimization problem of the type (3.6), i.e.,

argmin
x∈H

{F (x) : Gx = 0}, (4.11)

where F : H → R is a convex functional and G : H → H is a bounded linear
operator on H. We have the following useful result, which is the discrete version of
Theorem 3.1.3.

Theorem 4.2.1. ([71, Theorem 2.1.4, p. 305]). Let N = {G∗λ : λ ∈ H} =
Range(G∗). Then, x0 ∈ {x ∈ H : Gx = 0} solves the constrained minimization
problem (4.11) if and only if

0 ∈ ∂F (x0) +N.

Oblique Thresholding (OT)

We want to exploit Theorem 4.2.1 in order to produce an algorithmic solution to
each iteration step (4.7), which practically stems from the solution of a problem of
this type

arg min
u1∈V1

Tr|Γ1
u1=0

‖u1 − z1‖22 + 2α
∣
∣
∣∇(u1 + u2)|Ω1

∣
∣
∣ (Ω1).

It is well-known how to solve this problem if u2 ≡ 0 in Ω1 and if the trace condition
is not imposed. For the general case we propose to use the oblique thresholding
strategy, which was already introduced for the general subspace correction method
in Section 3.1. We recall in the following theorem the main idea of this technique for
our specific setting (cf. Theorem 3.1.4). In what follows all the involved quantities
are restricted to Ω1, e.g., u2 = u2|Ω1

.

86 Chapter 4: Domain Decomposition for Total Variation Minimization

Theorem 4.2.2 (Oblique thresholding). For u2 ∈ V2 and for z1 ∈ V1 the following
statements are equivalent:

(i) u∗1 = argmin u1∈V1
Tr|Γ1

u1=0
‖u1 − z1‖22 + 2α |∇(u1 + u2)| (Ω1);

(ii) there exists η ∈ Range(Tr|Γ1
)∗ = {η ∈ V1 with supp(η) = Γ1} such that 0 ∈

u∗1 − (z1 − η) + α∂V1 |∇(·+ u2)| (Ω1)(u
∗
1);

(iii) there exists η ∈ V1 with supp(η) = Γ1 such that u∗1 = (I −PαK)(z1 + u2 − η)−
u2 ∈ V1 and Tr|Γ1

u∗1 = 0;

(iv) there exists η ∈ V1 with supp(η) = Γ1 such that Tr|Γ1
η = Tr|Γ1

z1+Tr|Γ1
PαK(η−

(z1 + u2)) or equivalently

η = (Tr|Γ1
)∗ Tr|Γ1

(z1 + PαK(η − (z1 + u2))) . (4.12)

The proof follows analogue arguments as the one of Theorem 3.1.4 by just cor-
rectly replacing the projection πV2 by the trace operator Tr|Γ1

and by replacing the
spaces Vi with the new ones respectively.

Analogue to Proposition 3.1.6 we can show the following result:

Proposition 4.2.3. The following statements are equivalent:

(i) there exists η ∈ V1 such that η = (Tr|Γ1
)∗Tr|Γ1

(z1 + PαK(η − (z1 + u2))) (which
is in turn the condition (iv) of Theorem 4.2.2)

(ii) the sequence (η(m))m produced by the following iterative algorithm

η(0) ∈ V1, supp η(0) = Γ1

η(m+1) = (Tr|Γ1
)∗ Tr|Γ1

(
z1 + PαK(η

(m) − (z1 + u2))
)
, m ≥ 0.

(4.13)

converges to any η ∈ V1 that satisfies (4.12).

Convergence of the subspace minimization

From the results of the previous section it follows that the iteration (4.7) can be
explicitly computed by

u
(ℓ+1)
1 = Sα(u

(ℓ)
1 + T ∗(g − Tu2 − Tu

(ℓ)
1) + u2 − η(ℓ))− u2, (4.14)

where Sα := I − PαK and η(ℓ) ∈ V1 is any solution of the fixed point equation

η = (Tr|Γ1
)∗ Tr|Γ1

(

(u
(ℓ)
1 + T ∗(g − Tu2 − Tu

(ℓ)
1))

− PαK(u
(ℓ)
1 + T ∗(g − Tu2 − Tu

(ℓ)
1 + u2 − η))

)

.

The computation of η(ℓ) can be implemented by the algorithm in (4.13).

4.2 The Overlapping Domain Decomposition Algorithm 87

Proposition 4.2.4. Assume u2 ∈ V2 and ‖T‖ < 1. Then the iteration (4.14)

converges to a solution u∗1 ∈ V1 of (4.6) for any initial choice of u
(0)
1 ∈ V1.

The proof of this statement is analogue to the one of Theorem 3.1.9.

We conclude this section by mentioning that for the minimization on V2 all the
results presented here hold symmetrically by just adjusting the notations accord-
ingly.

4.2.2 Convergence of the Sequential Domain Decomposition
Method

In this section we want to prove the convergence of the algorithm in (4.5) to min-
imizers of J . In order to do that, we need a characterization of solutions of the
minimization problem (4.4) as the one provided in [113, Proposition 4.1] for the
continuous setting and specified for the discrete setting in Proposition 3.2.2.

Convergence properties

We return to the sequential algorithm in (4.5). Let us explicitly express the algo-

rithm as follows: pick an initial V1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, for example,

ũ
(0)
i = 0, i = 1, 2, and iterate













u
(n+1,0)
1 = ũ

(n)
1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + ũ

(n)
2 , u

(n+1,ℓ)
1) ℓ = 0, . . . , L− 1







u
(n+1,0)
2 = ũ

(n)
2

u
(n+1,m+1)
2 = argmin u2∈V2

Tr|Γ2
u2=0

J s
2 (u

(n+1,L)
1 + u2, u

(n+1,m)
2) m = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(4.15)
The algorithm in (4.15) consists of two nested iterations. The inner iterations with
indexes ℓ and m constitute the iterative solution for the sequence of surrogate func-
tionals on each subspace. Hence, these iterations approximatively compute minimiz-
ers for the functional J on the subspaces. The outer iteration with index n stems
from our domain decomposition approach and iteratively computes the minimizer
of J on the whole space. Note that we do prescribe a finite number L and M of
inner iterations for each subspace respectively and that u(n+1) = ũ

(n+1)
1 +ũ

(n+1)
2 , with

u
(n+1)
i 6= ũ

(n+1)
i , i = 1, 2, in general. In this section we want to prove the convergence

of the algorithm in (4.15) for any choice of L and M .

88 Chapter 4: Domain Decomposition for Total Variation Minimization

Proposition 4.2.5 (Convergence properties). Let us assume that ‖T‖ < 1. The
algorithm in (4.15) produces a sequence (u(n))n in H with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;

(iii) the sequence (u(n))n has subsequences that converge in H.

We will skip the proof of this proposition, since it follows analogue arguments as
the one of Theorem 3.1.12.

The use of the partition of unity {χ1, χ2} allows not only to guarantee the bound-

edness of (u(n))n, but also of the sequences (ũ
(n)
1)n and (ũ

(n)
2)n.

Lemma 4.2.6. The sequences (ũ
(n)
1)n and (ũ

(n)
2)n produced by the algorithm in (4.15)

are bounded, i.e., there exists a constant C̃ > 0 such that ‖ũ(n)i ‖2 ≤ C̃ for i = 1, 2.

Proof. From the boundedness of (u(n))n we have

‖ũ(n)i ‖2 = ‖χiu(n)‖2 ≤ cχ‖u(n)‖2 ≤ C̃ for i = 1, 2.

From Remark 3.2.3 (iii) we can also show the following auxiliary lemma.

Lemma 4.2.7. The sequences (η
(n,L)
1)n and (η

(n,M)
2)n are bounded.

Proof. From previous considerations we know that

u
(n,L)
1 = Sα(z

(n,L−1)
1 + ũ

(n−1)
2 − η

(n,L)
1)− ũ

(n−1)
2

u
(n,M)
2 = Sα(z

(n,M−1)
2 + u

(n,L)
1 − η

(n,M)
2)− u

(n,L)
1 .

Assume (η
(n,L)
1)n were unbounded, then by Remark 3.2.3 (iii), also Sα(z

(n,L−1)
1 +

ũ
(n−1)
2 − η

(n,L)
1) would be unbounded. By the monotonicity property of J , see

Proposition 4.2.5, and by (3.12) we obtain by analogue arguments as in the proof of
Theorem 3.1.12 that

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22

)

→ 0, n→ ∞.

(4.16)

Since (ũ
(n)
2)n and (u

(n,L)
1)n are bounded by Lemma 4.2.6 and formula (4.16), we have

a contradiction. Thus (η
(n,L)
1)n has to be bounded. With the same argument we can

show that (η
(n,M)
2)n is bounded.

4.2 The Overlapping Domain Decomposition Algorithm 89

Convergence to Minimizers

Now we are eventually able to show that the algorithm in (4.15) is indeed converging
to a minimizer of the original functional J .

Theorem 4.2.8 (Convergence to minimizers). Assume ‖T‖ < 1. Then accumula-
tion points of the sequence (u(n))n produced by the algorithm in (4.15) are minimizers
of J . If J has a unique minimizer, then the sequence (u(n))n converges to it.

Proof. Let us denote u(∞) the limit of a subsequence. For simplicity, we rename
such a subsequence by (u(n))n. From Lemma 4.2.6 we know that (ũ

(n)
1)n, (ũ

(n)
2)n and

consequently (u
(n,L)
1)n,(u

(n,M)
2)n are bounded. So the limit u(∞) can be written as

u(∞) = u
(∞)
1 + u

(∞)
2 = ũ

(∞)
1 + ũ

(∞)
2 , (4.17)

where u
(∞)
1 is the limit of (u

(n,L)
1)n, u

(∞)
2 is the limit of (u

(n,M)
2)n, and ũ

(∞)
i is the

limit of (ũ
(n)
i)n for i = 1, 2. Now we show that ũ

(∞)
2 = u

(∞)
2 . By using the triangle

inequality, from (4.16) it directly follows that

‖u(n+1,M)
2 − ũ

(n)
2 ‖2 → 0, n→ ∞. (4.18)

Moreover, since χ2 ∈ V2 is a fixed vector which is independent of n, we obtain from
Proposition 4.2.5 (ii) that

‖χ2(u
(n) − u(n+1))‖2 → 0, n→ ∞,

and hence
‖ũ(n)2 − ũ

(n+1)
2 ‖2 → 0, n→ ∞. (4.19)

Putting (4.18) and (4.19) together and noting that

‖u(n+1,M)
2 − ũ

(n)
2 ‖2 + ‖ũ(n)2 − ũ

(n+1)
2 ‖2 ≥ ‖u(n+1,M)

2 − ũ
(n+1)
2 ‖2

we have
‖u(n+1,M)

2 − ũ
(n+1)
2 ‖2 → 0, n→ ∞, (4.20)

which means that the sequences (u
(n,M)
2)n and (ũ

(n)
2)n have the same limit, i.e.,

ũ
(∞)
2 = u

(∞)
2 , which we denote by u

(∞)
2 . Then from (4.20) and (4.17) it directly

follows that ũ
(∞)
1 = u

(∞)
1 .

We set

F1(u
(n+1,L)
1) := ‖u(n+1,L)

1 − z
(n+1,L)
1 ‖22 + 2α|∇(u

(n+1,L)
1 + ũ

(n)
2|Ω1

)|(Ω1),

where
z
(n+1,L)
1 := u

(n+1,L−1)
1 + (T ∗(g − T ũ

(n)
2 − Tu

(n+1,L−1)
1))|Ω1

.

The optimality condition for u
(n+1,L)
1 is

0 ∈ ∂V1F1(u
(n+1,L)
1) + 2η

(n+1,L)
1 ,

90 Chapter 4: Domain Decomposition for Total Variation Minimization

where

η
(n+1,L)
1 = (Tr|Γ1

)∗ Tr|Γ1

(

(z
(n+1,L)
1) + PαK(η

(n+1,L)
1 − z

(n+1,L)
1 − ũ

(n)
2)
)

.

In order to use the characterization of elements in the subdifferential of |∇u|(Ω),
i.e., Proposition 3.2.2, we have to rewrite the minimization problem for F1. More
precisely, we define

F̂1(ξ
(n+1,L)
1) := ‖ξ(n+1,L)

1 − ũ
(n)
2|Ω1

− z
(n+1,L)
1 ‖22 + 2α|∇(ξ

(n+1,L)
1)|(Ω1)

for ξ
(n+1,L)
1 ∈ V1 with Tr|Γ1

ξ
(n+1,L)
1 = ũ

(n)
2 . Then the optimality condition for ξ

(n+1,L)
1

is
0 ∈ ∂F̂1(ξ

(n+1,L)
1) + 2η

(n+1,L)
1 . (4.21)

Note that indeed ξ
(n+1,L)
1 is optimal if and only if u

(n+1,L)
1 = ξ

(n+1,L)
1 −ũ(n)2|Ω1

is optimal.

Analogously we define

F̂2(ξ
(n+1,M)
2) := ‖ξ(n+1,M)

2 − u
(n+1,L)
1|Ω2

− z
(n+1,M)
2 ‖22 + 2α|∇(ξ

(n+1,M)
2)|(Ω2)

for ξ
(n+1,M)
2 ∈ V2 with Tr|Γ2

ξ
(n+1,M)
2 = u

(n+1,L)
1 , and the optimality condition for

ξ
(n+1,M)
2 is

0 ∈ ∂F̂2(ξ
(n+1,M)
2) + 2η

(n+1,M)
2 , (4.22)

where

η
(n+1,M)
2 = (Tr|Γ2

)∗ Tr|Γ2

(

(z
(n+1,M)
2) + PαK(η

(n+1,M)
2 − z

(n+1,M)
2 − u

(n+1,L)
1)

)

.

Let us recall that now we are considering functionals as in Proposition 3.2.2
with ϕ(s) = s, T = I, and Ω = Ωi, i = 1, 2. From Proposition 3.2.2 and Remark

3.2.3 we get that ξ
(n+1,L)
1 , and consequently u

(n+1,L)
1 is optimal, i.e., −2η

(n+1,L)
1 ∈

∂F̂1(ξ
(n+1,L)
1), if and only if there exists an M

(n+1)
1 = (M

(n+1)
0,1 , M̄

(n+1)
1) ∈ V1 × V d

1

with |M̄ (n+1)
1 (x)| ≤ 2α for all x ∈ Ω1 such that

〈M̄ (n+1)
1 (x), (∇(u

(n+1,L)
1 + ũ

(n)
2))(x)〉Rd + 2α|(∇(u

(n+1,L)
1 + ũ

(n)
2))(x)| = 0 (4.23)

−2(u
(n+1,L)
1 (x)− z

(n+1,L)
1 (x))− div M̄

(n+1)
1 (x)− 2η

(n+1,L)
1 (x) = 0, (4.24)

for all x ∈ Ω1. Analogously we get that ξ
(n+1,M)
2 , and consequently u

(n+1,M)
2 is

optimal, i.e., −2η
(n+1,M)
2 ∈ ∂F̂2(ξ

(n+1,M)
2), if and only if there exists an M

(n+1)
2 =

(M
(n+1)
0,2 , M̄

(n+1)
2) ∈ V2 × V d

2 with |M̄ (n+1)
2 (x)| ≤ 2α for all x ∈ Ω2 such that

〈M̄ (n+1)
2 (x), (∇(u

(n+1,L)
1 + u

(n+1,M)
2))(x)〉Rd + 2α|(∇(u

(n+1,L)
1 + ũ

(n+1,M)
2))(x)| = 0

(4.25)

−2(u
(n+1,M)
2 (x)− z

(n+1,M)
2 (x))− div M̄

(n+1)
2 (x)− 2η

(n+1,M)
2 (x) = 0,

(4.26)

4.2 The Overlapping Domain Decomposition Algorithm 91

for all x ∈ Ω2. Since (M̄
(n)
1 (x))n is bounded for all x ∈ Ω1 and (M̄

(n)
2 (x))n is bounded

for all x ∈ Ω2, there exist convergent subsequences (M̄
(nk)
1 (x))k and (M̄

(nk)
2 (x))k.

Let us denote M̄
(∞)
1 (x) and M̄

(∞)
2 (x) the respective limits of the sequences. For

simplicity we rename such sequences by (M̄
(n)
1 (x))n and (M̄

(n)
2 (x))n.

Note that, by Lemma 4.2.7 (or simply from (4.24) and (4.26)) the sequences

(η
(n,L)
1)n and (η

(n,M)
2)n are also bounded. Hence there exist convergent subsequences

that we denote, for simplicity, again by (η
(n,L)
1)n and (η

(n,M)
2)n with limits η

(∞)
i ,

i = 1, 2. By taking in (4.23)-(4.26) the limits for n→ ∞ we obtain

〈M̄ (∞)
1 (x), (∇(u

(∞)
1 + u

(∞)
2))(x)〉Rd + 2α|(∇(u

(∞)
1 + u

(∞)
2))(x)| = 0 for all x ∈ Ω1

−2(u
(∞)
1 (x)− z

(∞)
1 (x))− div M̄

(∞)
1 (x)− 2η

(∞)
1 (x) = 0 for all x ∈ Ω1

〈M̄ (∞)
2 (x), (∇(u

(∞)
1 + u

(∞)
2))(x)〉Rd + 2α|(∇(u

(∞)
1 + u

(∞)
2))(x)| = 0 for all x ∈ Ω2

−2(u
(∞)
2 (x)− z

(∞)
2 (x))− div M̄

(∞)
2 (x)− 2η

(∞)
2 (x) = 0 for all x ∈ Ω2.

Since supp η
(∞)
1 = Γ1 and supp η

(∞)
2 = Γ2 we have

〈M̄ (∞)
1 (x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω1

−2T ∗((Tu(∞))(x)− g(x))− div M̄
(∞)
1 (x) = 0 for all x ∈ Ω1 \ Γ1

(4.27)

〈M̄ (∞)
2 (x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω2

−2T ∗((Tu(∞))(x)− g(x))− div M̄
(∞)
2 (x) = 0 for all x ∈ Ω2 \ Γ2.

(4.28)

Observe now that from Proposition 3.2.2 we also have that 0 ∈ J (u(∞)) if and

only if there exists M (∞) = (M
(∞)
0 , M̄ (∞)) with |M̄ (∞)(x)| ≤ 2α for all x ∈ Ω such

that

〈M̄ (∞)(x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω

−2T ∗((Tu(∞))(x)− g(x))− div M̄ (∞)(x) = 0 for all x ∈ Ω.
(4.29)

Note that M̄
(∞)
j (x), j = 1, 2, for x ∈ Ω1 ∩ Ω2 satisfies both (4.27) and (4.28).

Hence let us choose

M (∞)(x) =

{

M
(∞)
1 (x) if x ∈ Ω1 \ Γ1

M
(∞)
2 (x) if x ∈ (Ω2 \ Ω1) ∪ Γ1

.

With this choice of M (∞) the equations (4.27) - (4.29) are valid and hence u(∞) is
optimal in Ω.

92 Chapter 4: Domain Decomposition for Total Variation Minimization

Remark 4.2.9. (i) If ∇u(∞)(x) 6= 0 for x ∈ Ωj, j = 1, 2, then M̄
(∞)
j is given as

in equation (3.37) by

M̄
(∞)
j (x) = −2α

(∇u(∞)
|Ωj

)(x)

|(∇u(∞)
|Ωj

)(x)|
.

(ii) The boundedness of the sequences (ũ
(n)
1)n and (ũ

(n)
2)n has been technically used

for showing the existence of an optimal decomposition u(∞) = u
(∞)
1 + u

(∞)
2 in

the proof of Theorem 4.2.8. Their boundedness is guaranteed as in Lemma
4.2.6 by the use of the partition of the unity {χ1, χ2}. Let us emphasize that

there is no way of obtaining the boundedness of the local sequences (u
(n,L)
1)n

and (u
(n,M)
2)n otherwise. In Figure 4.6 we show that the local sequences can

become unbounded in case we do not modify them by means of the partition of
the unity.

(iii) Note that for deriving the optimality condition (4.29) for u(∞) we combined the

respective conditions (4.27) and (4.28) for u
(∞)
1 and u

(∞)
2 . In doing that, we

strongly took advantage of the overlapping property of the subdomains, hence
avoiding a fine analysis of η

(∞)
1 and η

(∞)
2 on the interfaces Γ1 and Γ2.

Remark 4.2.10. The generalization of the algorithm to a multiple domain decom-
position is straightforward. Let us split now Ω into N ≥ 2 overlapping domains
Ωi, i = 1, . . . ,N . Associated with this decomposition we define Vi := {u ∈ H :
supp(u) ⊂ Ωi} such that H = V1+. . .+VN and we denote ui = πViu for i = 1, . . . ,N .
By Γi = ∂Ωi \ ∂Ω we denote the inner interfaces of the domain patches. Further we
fix a bounded uniform partition of unity (BUPU) {χ1, . . . , χN} ⊂ H such that

(a) Tr|Γi χi = 0 for i = 1, . . . ,N ,

(b)
∑N

i=1 χi = 1,

(c) suppχi ⊂ Ωi for i = 1, . . . ,N ,

(d) max{‖χ1‖∞, . . . , ‖χN‖∞} = cχ <∞.

Then we define the overlapping multiple domain decomposition algorithm as follows:
pick an initial V1 + . . . + VN ∋ ũ

(0)
1 + . . . + ũ

(0)
N := u(0) ∈ H, for example, ũ

(0)
i = 0,

4.2 The Overlapping Domain Decomposition Algorithm 93

i = 1, . . . ,N , and iterate












u
(n+1,0)
1 = ũ

(n)
1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 +

∑N
i=2 ũ

(n)
i , u

(n+1,ℓ)
1)

ℓ = 0, . . . , L1 − 1
. . .






u
(n+1,0)
N = ũ

(n)
N

u
(n+1,ℓ+1)
N = argmin uN∈VN

Tr|ΓN
uN=0

J s
N (
∑N−1

i=1 u
(n+1,L)
i + uN , u

(n+1,ℓ)
N)

ℓ = 0, . . . , LN − 1

u(n+1) :=
∑N

i=1 u
(n+1,L)
i

ũ
(n+1)
i := χi · u(n+1) for i = 1, . . . ,N .

(4.30)

The surrogate functionals J s
i are defined in an analogous way as above, for in-

stance, J s
1 is given as in (4.8) by just substituting

∑N
i=2 u

(n)
i for u2 and by using

the appropriate spaces. Then one can show the same convergence properties as in
Theorem 4.2.5 and Theorem 4.2.8. Hence the convergence of algorithm in (4.30) to
a minimizer of the original functional (4.1) is ensured.

4.2.3 A Parallel Algorithm and its Convergence

One of the main motivations and success of domain decomposition methods is the
reduction of the dimension with parallelization. In this subsection we introduce
a possible parallelization of the previous algorithm in (4.15), which may read as

follows: pick an initial V1 + V2 ∋ ũ
(0)
1 + ũ

(0)
2 := u(0) ∈ H, for example, ũ

(0)
i = 0,

i = 1, 2, and iterate












u
(n+1,0)
1 = ũ

(n)
1

u
(n+1,ℓ+1)
1 = argmin u1∈V1

Tr|Γ1
u1=0

J s
1 (u1 + ũ

(n)
2 , u

(n+1,ℓ)
1) ℓ = 0, . . . , L− 1







u
(n+1,0)
2 = ũ

(n)
2

u
(n+1,m+1)
2 = argmin u2∈V2

Tr|Γ2
u2=0

J s
2 (ũ

(n)
1 + u2, u

(n+1,m)
2) m = 0, . . . ,M − 1

u(n+1) :=
u
(n+1,L)
1 +u

(n+1,M)
2 +u(n)

2

ũ
(n+1)
1 := χ1 · u(n+1)

ũ
(n+1)
2 := χ2 · u(n+1).

(4.31)
We are going to propose similar convergence results as for the sequential algo-

rithm.

Proposition 4.2.11 (Convergence properties). Let us assume that ‖T‖ < 1. The
parallel algorithm in (4.31) produces a sequence (u(n))n in H with the following
properties:

94 Chapter 4: Domain Decomposition for Total Variation Minimization

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖2 = 0;

(iii) the sequence (u(n))n has subsequences that converge in H.

Proof. By the same argument as in the proof of Theorem 3.1.12, we obtain

J (u(n))− J (u
(n+1,L)
1 + ũ

(n)
2) ≥ C

L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22

and

J (u(n))− J (ũ
(n)
1 + u

(n+1,M)
2) ≥ C

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22.

Hence, by summing and halving

J (u(n))− 1

2
(J (u

(n+1,L)
1 + ũ

(n)
2) + J (ũ

(n)
1 + u

(n+1,M)
2))

≥ C

2

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22

)

.

We recall that J (u(n)) = ‖Tu(n) − g‖22 + 2α|∇u(n)|(Ω) (and T is linear). Then, by
the standard inequality (a2 + b2) ≥ 1

2
(a+ b)2 for a, b > 0, we have

∥
∥Tu(n+1) − g

∥
∥
2

2
=

∥
∥
∥
∥
∥
T

(

(u
(n+1,L)
1 + u

(n+1,M)
2) + u(n)

2

)

− g

∥
∥
∥
∥
∥

2

2

≤ 1

2
‖T (u(n+1,L)

1 + ũ
(n)
2)− g‖22 +

1

2
‖T (ũ(n)1 + u

(n+1,M)
2)− g‖22.

Moreover we have

|∇(u(n+1))|(Ω) ≤ 1

2

(

|∇(u
(n+1,L)
1 + ũ

(n)
2)|(Ω) + |∇(ũ

(n)
1 + u

(n+1,M)
2)|(Ω)

)

.

By the last two inequalities we immediately show that

J (u(n+1)) ≤ 1

2

(

J (u
(n+1,L)
1 + ũ

(n)
2) + J (ũ

(n)
1 + u

(n+1,M)
2)

)

,

hence

J (u(n))− J (u(n+1))

≥ C

2

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22

)

≥ 0. (4.32)

4.2 The Overlapping Domain Decomposition Algorithm 95

Since the sequence (J (u(n)))n is monotonically decreasing and bounded from below
by 0, it is also convergent. From (4.32) and the latter convergence we deduce

(
L−1∑

ℓ=0

‖u(n+1,ℓ+1)
1 − u

(n+1,ℓ)
1 ‖22 +

M−1∑

m=0

‖u(n+1,m+1)
2 − u

(n+1,m)
2 ‖22

)

→ 0, n→ ∞.

(4.33)
In particular, by again using (a2 + b2) ≥ 1

2
(a + b)2 for a, b > 0 and the triangle

inequality, we also have

‖u(n) − u(n+1)‖2 → 0, n→ ∞. (4.34)

The rest of the proof follows by analogous arguments as in that of Theorem 3.1.12.

Analogous results as the one stated in Lemma 4.2.6 and Lemma 4.2.7 also hold
in the parallel case. With these preliminary results the following theorem holds:

Theorem 4.2.12 (Convergence to minimizers). Assume ‖T‖ < 1. Then accumu-
lation points of the sequence (u(n))n produced by algorithm (4.31) are minimizers of
J . If J has a unique minimizer, then the sequence (u(n))n converges to it.

Proof. Note that u(n+1) is the average of the current iteration and the previous, i.e.,

u(n+1) =
u
(n+1,L)
1 + u

(n+1,M)
2 + u(n)

2
.

Observe that the sequences (u
(n+1,L)
1)n, (u

(n+1,M)
2)n and (u(n))n are bounded. Hence

there exist convergent subsequences. By taking the limit for n→ ∞ we obtain

u(∞) =
u
(∞)
1 + u

(∞)
2 + u(∞)

2
,

which is equivalent to
u(∞) = u

(∞)
1 + u

(∞)
2 .

With this observation the rest of the proof follows by analogous arguments as in
that of Theorem 4.2.8.

4.2.4 Applications and Numerics for the Sequential Imple-
mentation

In this section we shall present the application of the sequential and parallel algo-
rithms (4.15) and (4.31) for the minimization of J in one and two dimensions. In
particular, we give a detailed explanation of the domain decompositions used in the
numerics. Furthermore we present numerical examples for image inpainting, i.e., the
recovery of missing parts of images by minimal total variation interpolation, and for

96 Chapter 4: Domain Decomposition for Total Variation Minimization

compressed sensing [16, 17, 18, 52], more specifically, the nonadaptive compressed
acquisition of images for a classical toy problem inspired by magnetic resonance
imaging (MRI) [17, 81]. The numerical examples of this section and respective Mat-
lab codes can be found at [126]. These Matlab codes represent the implementation
of our proposed methods. Additionally, all the examples included in this chapter
are produced with these codes.

Domain Decomposition

In one dimension the domain Ω is a set of N equidistant points on an interval [a, b],
i.e., Ω = {a = x1, . . . , xN = b} and is split into two overlapping intervals Ω1 and
Ω2. Let |Ω1 ∩ Ω2| =: G be the size of the overlap of Ω1 and Ω2. Then we set
Ω1 = {a = x1, . . . , xn1} and Ω2 = {xn1−G+1, . . . , xN = b} with |Ω1| := n1 =

⌈
N+G

2

⌉
.

The interfaces Γ1 and Γ2 are located in i = n1 and n1 − G + 1 respectively (cf.
Figure 4.2). The auxiliary functions χ1 and χ2 can be chosen in the following way
(cf. Figure 4.1):

χ1(xi) =

{

1 xi ∈ Ω1 \ Ω2

1− 1
G−1

(i− (n1 −G+ 1)) xi ∈ Ω1 ∩ Ω2

χ2(xi) =

{

1 xi ∈ Ω2 \ Ω1

1
G−1

(i− (n1 −G+ 1)) xi ∈ Ω1 ∩ Ω2

.

Note that χ1(xi) + χ2(xi) = 1 for all xi ∈ Ω (i.e for all i = 1, . . . , N).

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

2

chi1
chi2

Figure 4.1: Auxiliary functions χ1 and χ2 for an overlapping domain decomposition with
two subdomains.

In two dimensions the domain Ω, i.e., the set of N1 × N2 equidistant points on
the 2-dimensional rectangle [a, b] × [c, d], is split in an analogous way with respect
to its rows. In particular we have Ω1 and Ω2 consisting of equidistant points on
[a, xn1]× [c, d] and on [xn1−G+1, b]× [c, d] respectively, compare Figure 4.3. In more
than two domains the splitting is done similarly.

4.2 The Overlapping Domain Decomposition Algorithm 97

Set Ω = Ω1 ∪ . . . ∪ ΩN , the domain Ω decomposed into N domains Ωi,
i = 1, . . . ,N , where Ωi and Ωi+1 are overlapping for i = 1, . . . ,N − 1.
Let |Ωi ∩ Ωi+1| =: G for every i = 1, . . . ,N − 1. Set s = ⌈N1/N⌉. Then

Ω1 =
{

a = x1, . . . , xs+G
2

}

× {c = y1, . . . , yN2 = d}
for i = 2 : N − 1

Ωi =
{

x(i−1)s−G
2
+1, . . . , xis+G

2

}

× {c = y1, . . . , yN2 = d}
end

ΩN = [x(N−1)s−G
2
+1, xN1]× {c = y1, . . . , yN2 = d} .

The auxiliary functions χi can be chosen in an analogous way as in the one dimen-
sional case:

χi(xi1 , yi2) =







1
G−1

(i1 − ((i− 1)s−G/2 + 1)) (xi1 , yi2) ∈ Ωi−1 ∩ Ωi

1 (xi1 , yi2) ∈ Ωi \ (Ωi−1 ∪ Ωi+1)

1− 1
G−1

(i1 − (is−G/2 + 1)) (xi1 , yi2) ∈ Ωi ∩ Ωi+1

for i = 1, . . . ,N with Ω0 = ΩN+1 = ∅.
Ω2

Γ2
d d

Γ1

Ω1

Figure 4.2: Overlapping domain decomposition in 1D.

a = x1

Ω1 \ Ω2

xn1−G ——- ——- Γ2 ——- ——-

Ω1 ∩ Ω2

xn1+1 ——- ——- Γ1 ——- ——-

Ω2 \ Ω1

b = xN

Figure 4.3: Decomposition of the image in two domains Ω1 and Ω2.

98 Chapter 4: Domain Decomposition for Total Variation Minimization

To compute the fixed point η of (4.12) in an efficient way we make the following
considerations, which allow to restrict the computation from Ω1 to a relatively small
stripe around the interface. The fixed point η is actually supported on Γ1 only, i.e.,
η(x) = 0 in Ω1 \ Γ1. Hence, we restrict the fixed point iteration for η to a relatively
small stripe Ω̂1 ⊂ Ω1. Analogously, one implements the minimizations of η2 on Ω̂2.
A similar trick was also used in [66] to compute suitable Lagrange multipliers at the
interfaces of the non-overlapping domains. However, there it is needed to consider
larger “bilateral stripes” around the support of the multiplier, making the numerical
computation slightly more demanding for that algorithm.

Numerical Experiments for the Sequential Implementation

In the following we present numerical examples for the sequential algorithm in
(4.15) in two particular applications: signal interpolation/image inpainting, and
compressed sensing. The scope of the section is to illustrate by simple examples the
main properties of the algorithms, as proven in our theoretical analysis. In particu-
lar, we emphasize the monotonicity properties of the algorithms with respect to the
energy J , the boundedness of the iterations due to the implementation of BUPUs,
and the robustness in correctly computing minimizers independently of the size of
overlapping regions.

In the numerical experiments the value for the parameter α has been chosen
experimentally, i.e., we chose the value that gave the best compromise between
visual quality of the minimizer and computational time of the algorithm. Note
however, that there exist more systematic ways in order to choose an optimal value
for α, where the choice depends both on the data noise level and the exact solution
of the problem, cf., e.g., [55] for a general approach in regularized inverse problems,
or [27] for a discussion of the correspondence between the noise level and α in the
case of total variation minimization.

In Figure 4.4 and Figure 4.5 we show a partially corrupted 1D signal on an
interval Ω of 100 sampling points, with a loss of information on an interval D ⊂ Ω.
The domain D of the missing signal points is marked with green. These signal points
are reconstructed by total variation interpolation, i.e., minimizing the functional J
in (4.1) with α = 0.4 and Tu = 1Ω\D · u, where 1Ω\D is the indicator function of
Ω \ D. A minimizer u(∞) of J is precomputed with an algorithm working on the
whole interval Ω without any decomposition. We show also the decay of relative
error and of the value of the energy J for applications of algorithm in (4.15) on two
subdomains and with different overlap sizes G = 1, 5, 10, 20, 30. The fixed points
η’s are computed on a small interval Ω̂i, i = 1, 2, of size 2. These results confirm
the behavior of the algorithm in (4.15) as predicted by the theory; the algorithm
monotonically decreases J and computes a minimizer, independently of the size of
the overlapping region. A larger overlapping region does not necessarily imply a
slower convergence. In these figures we do compare the speed in terms of CPU time.
In Figure 4.6 we also illustrate the effect of implementing the BUPU within the

4.2 The Overlapping Domain Decomposition Algorithm 99

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Initial Condition

Initial Condition
Inpainting Region

(a)

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
u(∞)

u(∞)

Inpainting Region

(b)

0 5 10 15 20 25 30 35
−35

−30

−25

−20

−15

−10

−5

0

5

Time in seconds

R
el

at
iv

e
er

ro
r

Relative error

overlap 30
overlap 20
overlap 1
overlap 5
overlap 10

(c)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time in seconds

J(
u)

Functional J(u)

overlap 30
overlap 20
overlap 1
overlap 5
overlap 10

J(u(∞))

(d)

Figure 4.4: We present a numerical experiment related to the interpolation of a 1D signal
by total variation minimization. The original signal is only provided outside of the green
subinterval. The initial datum g is shown in (a). As expected, the minimizer u(∞) is the
constant vector 1, as shown in (b). In (c) and (d) we display the rates of decay of the
relative error and of the value of J respectively, for applications of the algorithm in (4.15)
with different sizes G=1,5,10,20,30 of the overlapping region of two subintervals.

100 Chapter 4: Domain Decomposition for Total Variation Minimization

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
Initial Condition

Initial Condition
Inpainting Region

(a)

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5
u(∞)

u(∞)

Inpainting Region

(b)

0 2 4 6 8 10 12 14 16 18
−5

−4

−3

−2

−1

0

1

Time in seconds

R
el

at
iv

e
er

ro
r

Relative error

overlap 30
overlap 20
overlap 1
overlap 5
overlap 10

(c)

0 2 4 6 8 10 12 14 16 18
1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

1.76

1.78

Time in seconds

J(
u)

Functional J(u)

overlap 30
overlap 20
overlap 1
overlap 5
overlap 10

J(u(∞))

(d)

Figure 4.5: We show a second example of total variation interpolation in 1D. The initial
datum g is shown in (a). As expected, a minimizer u(∞) is (nearly) a piecewise linear
function, as shown in (b). In (c) and (d) we display the rates of decay of the relative error
and of the value of J respectively, for applications of the algorithm in (4.15) with different
sizes G=1,5,10,20,30 of the overlapping region of two subintervals.

4.2 The Overlapping Domain Decomposition Algorithm 101

domain decomposition algorithm. In this case, with datum g as in Figure 4.5, we
chose α = 1 and an overlap of size G = 10. The fixed points η’s are computed on a
small interval Ω̂i, i = 1, 2 respectively, of size 6.

10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
100 iterations

Reconstruction
Interface
u1
u2
Inpainting Region

(a)

10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
100 iterations

Reconstruction
Interface
u1
u2
Inpainting Region

(b)

Figure 4.6: Here we present two numerical experiments related to the interpolation of a
1D signal by total variation minimization. The original signal is only provided outside of
the green subinterval. On the left we show an application of the algorithm in (4.15) when
no correction with the partition of unity is provided. In this case, the sequence of the local

iterations u
(n)
1 , u

(n)
2 is unbounded. On the right we show an application of the algorithm

in (4.15) with the use of the partition of unity, which enforces the uniform boundedness of

the local iterations u
(n)
1 , u

(n)
2 .

Figure 4.7 shows an example of the domain decomposition algorithm in (4.15)
for total variation inpainting. As for the 1D example in Figures 4.4-4.6 the operator
T is a multiplier, i.e., Tu = 1Ω\D ·u, where Ω denotes the rectangular image domain
and D ⊂ Ω the missing domain in which the original image content got lost. The
regularization parameter α is fixed at the value 10−2. In Figure 4.7 the missing
domain D is the black writing, which covers parts of the image. Here, the image
domain of size 449 × 570 pixels is split into five overlapping subdomains with an
overlap size G = 28 × 570. Further, the fixed points η’s are computed on a small
stripe Ω̂i, i = 1, . . . , 5 respectively, of size 6× 570 pixels.

Finally, in Figure 4.8 we illustrate the successful application of our domain de-
composition algorithm in (4.15) for a compressed sensing problem. Here, we consider
a medical-type image (the so-called Logan-Shepp phantom) and its reconstruction
from only partial Fourier data. In this case the linear operator T = S ◦ F , where
F denotes the 2D Fourier matrix and S is a downsampling operator which selects
only a few frequencies as output. We minimize J with α set at 0.4 × 10−2. In the
application of the algorithm in (4.15) the image domain of size 256 × 256 pixels is
split into four overlapping subdomains with an overlap size G = 20×256. The fixed
points η’s are computed in a small stripe Ω̂i, i = 1, . . . , 4 respectively, of size 6×256

102 Chapter 4: Domain Decomposition for Total Variation Minimization

Initial Picture

(a)

146 iterations

(b)

Figure 4.7: This figure shows an application of the algorithm in (4.15) for image in-
painting. In this simulation the problem was split into five subproblems on overlapping
subdomains.

pixels.

Remark 4.2.13. The optimization of the different parameters of the algorithm,
namely, the number of subdomains, the extent of the overlapping regions, the number
of internal iterations, and the relationship with the rate of convergence are a very
challenging problem, and a matter of current investigation.

Numerical Experiments for the Parallel Implementation

In this section we show that already with relatively large images, classical methods
do not scale well and may converge slowly, whereas the parallel implementation of the
algorithm on a multiple processor computer allows for significant reductions of the
CPU time, which improves with the number of subdomains. For a fair comparison
we utilize Chambolle’s algorithm both for the solution on the whole domain and
on subdomains. We expect that the use of other algorithms [26, 46, 69, 96, 119]
may change quantitatively the results but not qualitatively. Of course, considering
problems of even larger size, for example, in higher dimension, can only further
promote and favour the use of parallel strategies.

In Figure 4.9 we depict an image of size 5616× 3744, which has been vandalized
by superimposing a text. In Figure 4.10 we show the results due to the application
of the parallel algorithm in (4.31) acting on 4 and 16 subdomains.

We do not dispose of a minimizer in this case (except for considering as an
approximate minimizer one of the iterations u(n) for n very large) and the value of
J is not a good indicator of the quality of image restoration. Being the scope of the
minimization the approximate recovery of the original image, which we may denote
uorg, we use as a stopping criterion ‖u(n) − uorg‖22 < ǫ, for a prescribed tolerance

4.2 The Overlapping Domain Decomposition Algorithm 103

Sampling domain in the frequency plane

(a) (b)

26 iterations

(c)

126 iterations

(d)

Figure 4.8: We show an application of the algorithm in (4.15) in a classical compressed
sensing problem for recovering piecewise constant medical-type images from given partial
Fourier data. In this simulation the problem was split via decomposition into four over-
lapping subdomains. On the top-left figure, we show the sampling data of the image in the
Fourier domain. On the top-right the back-projection provided by the sampled frequency
data together with the highlighted partition of the physical domain into four subdomains is
shown. The bottom figures present intermediate iterations of the algorithm, i.e., u(26) and
u(125).

1 domain 4 domains 16 domains
CPU time 23086.68 s 6531.94 s 1583.52 s
Nr. outer iterations 1000 10 10

Table 4.1: Regularization parameter α = 0.1, 3 inner iterations on the subdomains. The
stopping criterion for all three algorithms is when the squared L2-norm of the difference
between the current minimizer and the original image ‖u(n)−uorg‖22 gets below ǫ = 0.0048.

104 Chapter 4: Domain Decomposition for Total Variation Minimization

Figure 4.9: Image size 5616× 3744.

Figure 4.10: The computed approximate minimizers for the regularization parameter α =
0.1, 100 outer iterations and 3 inner iterations, for 4 domains (left picture) and 16 domains
(right picture).

4.3 Non-overlapping Domain Decomposition Algorithm 105

ǫ. While the algorithm applied on the whole domain does not reach the prescribed
accuracy after more than 6 hours of running time, the computation with multiple
subdomains can reach the result in less than half an hour. We also emphasize that
in these experiments the computational time decreases linearly with the number of
subdomains, showing that the computation of the Lagrange multipliers, used in our
algorithm in order to correctly interface the patches, has a nearly negligible cost
with respect to the minimizations on the subdomains, see Table 4.1.

4.3 Non-overlapping Domain Decomposition Al-

gorithm

The work presented in the previous section was particularly addressed to overlap-
ping domain decomposition. In this section we show how to specify the subspace
correction algorithm from Chapter 3, i.e., the algorithm in (3.13), to the case of
a non-overlapping domain decomposition as suggested in [66]. The functional of
interest to be minimized is again the discrete functional J in (4.1) together with
the coercivity condition (C).

Now, instead of minimizing J on the whole domain, we propose to decompose Ω
into disjoint and non-overlapping subdomains. We limit ourself to split the problem
into two disjoint subdomains Ω1 and Ω2 such that Ω1 ⊂ Ω and Ω2 = Ω \ Ω1,
but one can easily generalize the splitting to multiple subdomains, see Remark
4.2.10. As in the previous section, we assume again, only for simplicity, that also
the subdomains Ωi are discrete d-orthotopes as well as Ω. Due to this domain
decomposition H is split into two closed orthogonal and complementary subspaces
Vi = {u ∈ H : supp(u) ⊂ Ωi}, for i = 1, 2, i.e., H = V1 ⊕ V2. Note that in the
following ui = πVi(u), for i = 1, 2. Now we would like to solve (4.4) by picking an

initial V1 ⊕ V2 ∋ u
(0)
1 + u

(0)
2 := u(0) ∈ H, e.g., u

(0)
i = 0, i = 1, 2, and iterate







u
(n+1)
1 ≈ argminv1∈V1 J (v1 + u

(n)
2)

u
(n+1)
2 ≈ argminv2∈V2 J (u

(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

(4.35)

The subspace minimization problems of the algorithm in (4.35) are solved as
described in Section 3.1. That is, for J s

1 defined as in (3.4) now with the spaces Vi
from above, each subspace minimization is approximated by the surrogate functional
minimization

u
(0)
1 ∈ V1, u

(ℓ+1)
1 = arg min

u1∈V1
J s

1 (u1 + u2, u
(ℓ)
1), ℓ ≥ 0

(cf. (3.5)), which is then solved by Lagrange multipliers or more precisely by iterative
oblique thresholding, see Theorem 3.1.4.

106 Chapter 4: Domain Decomposition for Total Variation Minimization

4.3.1 Convergence of the Sequential Domain Decomposition
Method

Let us return to the sequential algorithm in (3.13) and express it explicitly for the
case of a non-overlapping domain decomposition as follows: pick an initial V1⊕V2 ∋
u
(0,L)
1 + u

(0,M)
2 := u(0) ∈ H, e.g., u

(0)
i = 0, i = 1, 2, and iterate







{

u
(n+1,0)
1 = u

(n,L)
1

u
(n+1,ℓ+1)
1 = argminu1∈V1 J s

1 (u1 + u
(n,M)
2 , u

(n+1,ℓ)
1) ℓ = 0, . . . , L− 1

{

u
(n+1,0)
2 = u

(n,M)
2

u
(n+1,m+1)
2 = argminu2∈V2 J s

2 (u
(n+1,L)
1 + u2, u

(n+1,m)
2) m = 0, . . . ,M − 1

u(n+1) := u
(n+1,L)
1 + u

(n+1,M)
2 .

(4.36)

In this section we want to prove its convergence to a minimizer of the discrete
functional J for any choice of finite numbers L andM of inner iterations. We recall
that by Theorem 3.1.12 the algorithm in (4.36) decreases the energy J monotonically
and converges. Moreover only under some technical conditions, which are in general
not fulfilled, the algorithm even converges to a minimizer of the original functional
(4.1). However, in the numerical experiments shown in [66], the algorithm seems
always converging robustly to the expected minimizer, see Figure 4.11.

(a)

94 iterations

(b)

Figure 4.11: This figure shows an application of the sequential domain decomposition
algorithm in (4.36) for image inpainting. In this simulation the problem was split into
five subproblems on non-overlapping subdomains. The interfaces of the subdomains are
marked in red.

4.3 Non-overlapping Domain Decomposition Algorithm 107

Convergence to Minimizers

We close this gap between the lacking theoretical analysis and the promising numer-
ical examples from above by showing that the algorithm in (4.36) indeed converges
to an expected minimizer in our discrete setting. In order to do that, we use again
Proposition 3.2.2 as a characterization of solutions of the minimization problem
(4.4). Then by following the same strategy as in the proof of Theorem 4.2.8 we are
eventually able to prove the convergence of the algorithm in (4.36) to minimizers of
J .

Theorem 4.3.1 (Convergence to minimizers). Assume ‖T‖ < 1. Then accumula-
tion points of the sequence (u(n))n produced by the algorithm in (4.36) are minimizers
of J . If J has a unique minimizer, then the sequence (u(n))n converges to it.

Proof. Note that due to the orthogonal splitting of Ω the sequences (u
(n,L)
1)n and

(u
(n,M)
2)n produced by the algorithm in (4.36) are bounded. Hence there exist con-

vergent subsequences, which we denote for ease again by (u
(n,L)
1)n and (u

(n,M)
2)n.

Let us denote by u
(∞)
1 the limit of the sequence (u

(n,L)
1)n and u

(∞)
2 the limit of the

sequence (u
(n,M)
2)n. Then by analogous arguments as the ones in the proof of The-

orem 4.2.8 we obtain with the help of Proposition 3.2.2 the following optimality
conditions

〈M̄ (∞)
1 (x), (∇(u

(∞)
1 + u

(∞)
2))(x)〉Rd + 2α|(∇(u

(∞)
1 + u

(∞)
2))(x)| = 0 for all x ∈ Ω

−2(u
(∞)
1 (x)− z

(∞)
1 (x))− div M̄

(∞)
1 (x)− 2η

(∞)
1 (x) = 0 for all x ∈ Ω

for u
(∞)
1 and the following optimality conditions

〈M̄ (∞)
2 (x), (∇(u

(∞)
1 + u

(∞)
2))(x)〉Rd + 2α|(∇(u

(∞)
1 + u

(∞)
2))(x)| = 0 for all x ∈ Ω

−2(u
(∞)
2 (x)− z

(∞)
2 (x))− div M̄

(∞)
2 (x)− 2η

(∞)
2 (x) = 0 for all x ∈ Ω

for u
(∞)
2 .

Since η
(∞)
1 ∈ V2 is only supported in Ω2, i.e., η

(∞)
1 (x) = 0 in Ω1, and η

(∞)
2 ∈ V1 is

only supported in Ω1, i.e., η
(∞)
2 (x) = 0 in Ω2, we have

〈M̄ (∞)
1 (x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω

−2πV1T
∗((Tu(∞))(x)− g(x))− div M̄

(∞)
1 (x) = 0 for all x ∈ Ω1

(4.37)

〈M̄ (∞)
2 (x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω

−2πV2T
∗((Tu(∞))(x)− g(x))− div M̄

(∞)
2 (x) = 0 for all x ∈ Ω2.

(4.38)

Observe now that from Proposition 3.2.2 we also have that 0 ∈ J (u(∞)) if and only

if there exists M (∞) = (M
(∞)
0 , M̄ (∞)) with |M̄ (∞)(x)| ≤ 2α for all x ∈ Ω such that

〈M̄ (∞)(x), (∇(u(∞))(x)〉Rd + 2α|(∇u(∞))(x)| = 0 for all x ∈ Ω

−2T ∗((Tu(∞))(x)− g(x))− div M̄ (∞)(x) = 0 for all x ∈ Ω.
(4.39)

108 Chapter 4: Domain Decomposition for Total Variation Minimization

Hence let us choose

M (∞)(x) =

{

M
(∞)
1 (x) if x ∈ Ω1

M
(∞)
2 (x) if x ∈ Ω2

.

With this choice ofM (∞) equations (4.37) - (4.39) are valid and hence u(∞) is optimal
in Ω.

Remark 4.3.2. Note that in comparison to the proof of Theorem 4.2.8, here we
could not use the overlapping property of the subdomains, but we took strongly ad-
vantage of the fact that supp η1 ⊂ Ω2 and supp η2 ⊂ Ω1. Hence we could restrict the
corresponding optimality conditions in (4.37) and (4.38) to the domain Ω1 and Ω2

only.

4.3.2 A Parallel Algorithm and its Convergence

The parallel version of the previous algorithm in (4.36) may be written as follows:

pick an initial V1 ⊕ V2 ∋ u
(0,L)
1 + u

(0,M)
2 := u(0) ∈ H and iterate







{

u
(n+1,0)
1 = u

(n,L)
1

u
(n+1,ℓ+1)
1 = argminu1∈V1 J s

1 (u1 + u
(n,M)
2 , u

(n+1,ℓ)
1) ℓ = 0, . . . , L− 1

{

u
(n+1,0)
2 = u

(n,M)
2

u
(n+1,m+1)
2 = argminu2∈V2 J s

2 (u
(n,L)
1 + u2, u

(n+1,m)
2) m = 0, . . . ,M − 1

u(n+1) :=
u
(n+1,L)
1 +u

(n+1,M)
2 +u(n)

2
.

(4.40)
We get similar convergence properties of this algorithm as for (4.36).

Theorem 4.3.3. The algorithm in (4.40) produces a sequence (u(n))n in H with the
following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖H = 0;

(iii) the sequence (u(n))n has subsequences which converge in H.

The proof of this theorem is analogue to the one of Proposition 4.2.11. Moreover
we can show by similar arguments as in Theorem 4.2.12 the following statement.

Theorem 4.3.4 (Convergence to minimizers). Assume ‖T‖ < 1. Then accumula-
tion points of the sequence (u(n))n produced by algorithm (4.40) are minimizers of
J . If J has a unique minimizer, then the sequence (u(n))n converges to it.

4.4 Bregmanized Non-overlapping Domain Decomposition 109

4.4 Bregmanized Non-overlapping Domain Decom-

position

In this section we are now concerned with increasing the performance of the non-
overlapping domain decomposition algorithms introduced in Section 4.3, by using a
more efficient technique to solve the subminimization problems. It turned out that
we have to solve on each subdomain constrained optimization problems of the type

min
u∈H

{F (u) := ‖u− z‖22 + 2α|∇u|(Ω) subject to Au = f}, (4.41)

where z and f are functions given on H and A is a linear bounded operator in H. In
particular, for the non-overlapping domain decomposition method the constraint is
the orthogonal projection onto a subspace, while for the overlapping algorithm the
linear constraint is simply a trace condition.

It is well-known that the Augmented Lagrange Method [72] and its variations
known under the name of Bregman iterations [96, 123] solve (4.41) efficiently. Nev-
ertheless in the previous sections we used the iterative oblique thresholding tech-
nique, see for example Section 3.1, to compute an approximate solution of (4.41). In
this section, we suggest now to compute the solution of the subproblems by nested
Bregman iterations. More precisely, we use the recently introduced Bregmanized
Operator Splitting technique [124] combined with the Split Bregman method [69] for
the solution of (4.41) and call this new method simply Bregmanized Operator Split-
ting - Split Bregman algorithm. This approach avoids the computation of a costly
fixed point iteration in each domain decomposition step and consequently speeds
up the overall computational time of the domain decomposition algorithms, cf. the
numerical examples in Section 4.4.3.

4.4.1 Bregmanized Operator Splitting - Split Bregman Al-
gorithm

The Bregman distance, associated with a convex functional F : H → R̄, of the
vectors u, v ∈ Dom(F) is defined by

Dp
F (u, v) := F (u)− F (v)− 〈p, u− v〉,

for p ∈ ∂F (v). Note that the Bregman distance is not a distance in the usual sense,
since it is in general not symmetric and also the triangle inequality does not hold.
However it satisfies Dp

F (u, v) ≥ 0 and Dp
F (u, v) = 0 if u = v [14].

In [96] the so-called Bregman Iteration was proposed in order to solve constrained
optimization problems of the type (4.41):

Algorithm 1. Bregman Iteration: Let λ > 0 and u(0) = 0 then for k = 0, 1, . . . do

p(k) ∈ ∂F (u(k))

u(k+1) = argmin
u∈H

Dp(k)

F (u, u(k)) + λ‖Au− f‖22.
(4.42)

110 Chapter 4: Domain Decomposition for Total Variation Minimization

The weak convergence of this algorithm to a solution of (4.41) is ensured and it
is shown that the sequence of residuals (‖Au(k) − f‖)k is monotonically decreasing
to zero, see [96]. Since the Bregman Iteration is equivalent to the Augmented La-
grangian Method its convergence is also guaranteed by the results in [59]. Moreover,
in [123] it has been shown that the Bregman Iteration is equivalent to the following
simplified iterative scheme:

Algorithm 2. Simplified Bregman Iteration: Let λ > 0. Initialize u(0) = 0 and
f (0) = 0 then for k = 0, 1, . . . do

u(k+1) = argmin
u∈H

F (u) + λ‖Au− f − f (k)‖22
f (k+1) = f (k) − Au(k+1).

(4.43)

The direct computation of the update u(k+1) in (4.42) and (4.43) is sometimes
not efficiently and exactly solvable, in particular if the constraint is ill-posed. In
order to overcome this drawback we may suggest to solve the minimization problem
in (4.43) via a forward-backward operator splitting, see [39] for more details. In
particular, we are interested in the Bregmanized Operator Splitting algorithm [124],
which is based on one forward-backward operator splitting iteration and a suitable
update of the Lagrange multiplier:

Algorithm 3. Bregmanized Operator Splitting (BOS): Let λ, δ > 0. Initialize u(0) =
0 and f (0) = 0 then for k = 0, 1, . . . do

u(k+1) = argmin
u∈H

F (u) +
λ

δ
‖u− (u(k) − δA∗(Au(k) − f − f (k)))‖22

f (k+1) = f (k) − Au(k+1).

(4.44)

This algorithm is ensured to converge to a minimal solution of (4.41) if 0 < δ <
1

‖A∗A‖
. Moreover, it is very stable in practice, and it is usually easy to implement.

We note that the minimization problem in (4.44) is equivalent to the famous
ROF-problem [103] and therefore there exist several numerical methods that solve
this problem efficiently, see [23, 26, 46, 69]. Among the fastest is the Split Bregman
Method [69], whose main idea is to consider instead of

argmin
u∈H

‖u− z‖22 + 2α|∇u|(Ω) + λ

δ
‖u− (u(k) − δA∗(Au(k) − f − f (k)))‖22

the following equivalent constrained problem

argmin
u,d

‖u−z‖22+2α|d|(Ω)+ λ

δ
‖u−(u(k)−δA∗(Au(k)−f−f (k)))‖22 s.t. d = ∇u.

Solving this constrained minimization problem by the simplified Bregman Iteration

4.4 Bregmanized Non-overlapping Domain Decomposition 111

we get the Split Bregman Method:

(u(l+1), d(l+1)) = argmin
u,d

‖u− z‖22 + 2α|d|(Ω) + λ

δ
‖u− (u(k) − δA∗(Au(k) − f − f (k)))‖22

+ µ‖d−∇u− b(l)‖22
b(l+1) = b(l) + (∇u(l+1) − d(l+1)),

(4.45)

where µ > 0. We propose to combine the Bregmanized Operator Splitting with
the Split Bregman Iteration to solve (4.41), which results in an algorithm using two
nested iterations:

Algorithm 4. Bregmanized Operator Splitting - Split Bregman (BOS-SB): Let
λ, δ, µ > 0 be regularization parameters. Initialize u(0,L0) = 0 and f (0) = 0 then
for k = 0, 1, . . . do







u(k+1,0) = u(k,Lk), d(k+1,0) = b(k+1,0) = 0
for l = 0, . . . , Lk+1 do






u(k+1,l+1) = argminu∈H ‖u− z‖22
+λ
δ
‖u− (u(k,Lk) − δA∗(Au(k,Lk) − f − f (k)))‖22

+µ‖d(k+1,l) −∇u− b(k+1,l)‖22
d(k+1,l+1) = argmind 2α|d|(Ω) + µ‖d−∇u(k+1,l+1) − b(k+1,l)‖22
b(k+1,l+1) = b(k+1,l) +∇u(k+1,l+1) − d(k+1,l+1)

f (k+1) = f (k) − Au(k+1,Lk+1).

(4.46)

The number of inner iteration Lk is chosen such that ‖u(k,Lk)−u(k,Lk−1)‖2 ≤ tol.

4.4.2 Solution of the Subspace Minimization Problems

In this section we discuss the minimization of functional (4.1) by using the non-
overlapping domain decomposition approach suggested in Section 4.3 and we propose
to solve the corresponding subminimization problems with the help of Algorithm 4.
In order to address the subminimization problems of the algorithm in (4.36) we have
to solve

u
(ℓ+1)
i = arg min

ui∈Vi
J s
i (u1 + u2, u

(ℓ)
i) = arg min

ui∈Vi
‖ui − zi‖22 + 2α|∇(u1 + u2)|(Ω) ℓ ≥ 0,

(4.47)

where z1 = u
(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1) and z2 = u

(ℓ)
2 + πV2T

∗(g − Tu1 − Tu
(ℓ)
2).

Let us further decompose Ω2 = Ω̂2 ∪ (Ω2 \ Ω̂2) with ∂Ω̂2 ∩ ∂Ω1 = ∂Ω2 ∩ ∂Ω1,
where Ω̂2 ⊂ Ω2 is a neighborhood stripe around the interface ∂Ω2∩∂Ω1. Analogously
we split Ω1 = Ω̂1 ∪ (Ω1 \ Ω̂1) with ∂Ω̂1 ∩ ∂Ω2 = ∂Ω1 ∩ ∂Ω2. Associated to these
decompositions we define V̂i = {u ∈ H : supp(u) ⊂ Ω̂i}. By the splitting of the total

112 Chapter 4: Domain Decomposition for Total Variation Minimization

variation (2.6), i.e.,

|∇(u1 + u2)|(Ω) =|∇(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)|(Ω1 ∪ Ω̂2) + |∇u2|Ω2\Ω̂2
|(Ω2 \ Ω̂2)

+

∫

∂Ω̂2∩∂(Ω2\Ω̂2)

|u+2 − u−2 |dHd−1(x),
(4.48)

where Hd is the Hausdorff measure of dimension d and u|Ω1∪Ω̂2
is the restriction of

u to Ω1 ∪ Ω̂2, we can restrict the minimization in (4.47) to the domain Ω1 ∪ Ω̂2 and
Ω2 ∪ Ω̂1 respectively, i.e.,

u
(ℓ+1)
1 = arg min

u1∈V1
‖u1 − (u

(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1))‖22

+2α
∣
∣
∣∇(u1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣
∣
∣ (Ω1 ∪ Ω̂2), ℓ ≥ 0,

u
(ℓ+1)
2 = arg min

u2∈V2
‖u2 − (u

(ℓ)
2 + πV2T

∗(g − Tu1 − Tu
(ℓ)
2))‖22

+2α
∣
∣
∣∇(u1|Ω2∪Ω̂1

+ u2|Ω2∪Ω̂1
)
∣
∣
∣ (Ω2 ∪ Ω̂1), ℓ ≥ 0.

Eventually, these subminimization problems can be rewritten as problems on Vi⊕V̂î,
i ∈ {1, 2} and read

arg min
u∈V1⊕V̂2

‖u− z1‖22 + 2α
∣
∣
∣∇(u|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣
∣
∣ (Ω1 ∪ Ω̂2) s.t. πV̂2u = 0, (4.49)

arg min
u∈V2⊕V̂1

‖u− z2‖22 + 2α
∣
∣
∣∇(u1|Ω2∪Ω̂1

+ u|Ω2∪Ω̂1
)
∣
∣
∣ (Ω2 ∪ Ω̂1) s.t. πV̂1u = 0, (4.50)

where z1 = u
(ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(ℓ)
1) and z2 = u

(ℓ)
2 + πV2T

∗(g − Tu1 − Tu
(ℓ)
2).

We write the constrained minimization problems (4.49) and (4.50) in another way.
More precisely, we consider the problems

arg min
ξ1∈V1⊕V̂2

‖ξ1 − u2 − z1‖22 + 2α
∣
∣
∣D(ξ1|Ω1∪Ω̂2

)
∣
∣
∣ (Ω1 ∪ Ω̂2) s.t. πV̂2ξ1 = u2 (4.51)

arg min
ξ2∈V2⊕V̂1

‖ξ2 − u1 − z2‖22 + 2α
∣
∣
∣D(ξ2|Ω2∪Ω̂1

)
∣
∣
∣ (Ω2 ∪ Ω̂1) s.t. πV̂1ξ2 = u1 (4.52)

and note that for i = 1, 2 and î = {1, 2} \ {i} indeed ξi is optimal if and only if
ui = ξi − uî is optimal. Moreover, notice that the new problems (4.51) and (4.52)
are now of the type (4.41).

Bregmanized Operator Splitting - Split Bregman (BOS-SB)

In Section 4.3 the constrained minimization problems (4.49)-(4.50) are solved by
oblique thresholding, see Section 3.2.6 for more details. The oblique thresholding

4.4 Bregmanized Non-overlapping Domain Decomposition 113

iteration can be very slow in general, cf. [80]. Let us explain how we can accelerate
this computation by replacing the oblique thresholding by the BOS-SB algorithm.

In order to speed up the computation of the algorithm in (4.35) we suggest to
solve each of its subproblems by using Algorithm 4. Actually by Algorithm 4 we
can directly compute a solution of the constrained optimization problems (4.51) and
(4.52). That is, for example, the minimizer for (4.51) is computed by the following
algorithm: let A = πV̂2 and λ, δ, µ > 0 be regularization parameters. Initialize

ξ
(0,L0)
1 = ξ

(ℓ)
1 = u

(ℓ)
1 + u

(ℓ)
2 and f (0) = 0 then for k = 0, 1, . . . do







ξ
(k+1,0)
1 = ξ

(k,Lk)
1 , d(k+1,0) = b(k+1,0) = 0

for l = 0, . . . , Lk+1 do






ξ
(k+1,l+1)
1 = argminξ1∈V1⊕V̂2

1
2α
‖ξ1 − u2 − z1‖22

+λ
δ
‖ξ1 − (ξ

(k,Lk)
1 − δA∗(Aξ

(k,Lk)
1 − u2 − f (k)))‖22

+µ‖d(k+1,l) −D(ξ1|Ω1∪Ω̂2
)− b(k+1,l)‖22

d(k+1,l+1) = argmind |d|(Ω1 ∪ Ω̂2) + µ‖d−D(ξ
(k+1,l+1)
1|Ω1∪Ω̂2

)− b(k+1,l)‖22
b(k+1,l+1) = b(k+1,l) +D(ξ

(k+1,l+1)
1|Ω1∪Ω̂2

)− d(k+1,l+1)

f (k+1) = f (k) − Aξ
(k+1,Lk+1)
1 .

(4.53)

Then by setting u
(k+1,Lk+1)
1 = ξ

(k+1,Lk+1)
1 −u2 for all k = 0, 1, . . . we obtain a sequence

(u
(k,Lk)
1)k, which is converging to a solution of (4.49). Instead of making a detour

by computing the sequence (ξ
(k,Lk)
1)k we would like to find a solution of (4.49), i.e.,

the update u
(ℓ+1)
1 , directly. Therefore we note that ξ

(k+1,l+1)
1 is a minimizer of

arg min
ξ1∈V1⊕V̂2

1

2α
‖ξ1 − u2 − z1‖22 +

λ

δ
‖ξ1 − (ξ

(k,Lk)
1 − δA∗(Aξ

(k,Lk)
1 − u2 − f (k)))‖22

+ µ‖d(k+1,l) −D(ξ1|Ω1∪Ω̂2
)− b(k+1,l)‖22

if and only if u
(k+1,l+1)
1 = ξ

(k+1,l+1)
1 − u2 is a minimizer of

arg min
u1∈V1⊕V̂2

1

2α
‖u1 − z1‖22 +

λ

δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au

(k,Lk)
1 − f (k)))‖22

+ µ‖d(k+1,l) −D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)− b(k+1,l)‖22,

where u
(k,Lk)
1 = ξ

(k,Lk)
1 − u2. By this observation and by the fact that f (k) = f (0) +

∑k
i=1 u2 − Aξ

(i,Li)
1 = f (0) −∑k

i=1Au
(i,Li)
1 we can directly compute the update u

(ℓ+1)
1

by the following algorithm: let A = πV̂2 and λ, δ, µ > 0 be regularization parameters.

114 Chapter 4: Domain Decomposition for Total Variation Minimization

Initialize u
(0,L0)
1 = u

(ℓ)
1 and f (0) = 0 then for k = 0, 1, . . . do







u
(k+1,0)
1 = u

(k,Lk)
1 , d(k+1,0) = b(k+1,0) = 0

for l = 0, . . . , Lk+1 do






u
(k+1,l+1)
1 = argminu1∈V1⊕V̂2

1
2α
‖u1 − z1‖22

+λ
δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au

(k,Lk)
1 − f (k)))‖22

+µ‖d(k+1,l) −∇(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)− b(k+1,l)‖22
d(k+1,l+1) = argmind |d|(Ω1 ∪ Ω̂2) + µ‖d−∇(u

(k+1,l+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− b(k+1,l)‖22

b(k+1,l+1) = b(k+1,l) +∇(u
(k+1,l+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− d(k+1,l+1)

f (k+1) = f (k) − Au
(k+1,Lk+1)
1 .

(4.54)
In our finite dimensional setting the BOS-SB iteration (4.54) enjoys the following

convergence properties.

Proposition 4.4.1. Let u
(k+1,0)
1 = u

(k,Lk)
1 ∈ V1, d

(k+1,0) = 0 and (u
(k+1,l)
1)l and

(d(k+1,l))l be sequences generated by the Split Bregman Iteration (4.45). Then u
(k+1,l)
1 →

u
(k+1,∗)
1 and d(k+1,l) → d(k+1,∗) = ∇u(k+1,∗)

1 for l → ∞, where u
(k+1,∗)
1 solves the mini-

mization problem given by one iteration of the Bregmanized Operator Splitting, i.e.,

arg min
u1∈V1⊕V̂2

1

2α
‖u1 − z1‖22 +

λ

δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au

(k,Lk)
1 − f (k)))‖22

+
∣
∣
∣∇(u1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣
∣
∣ (Ω1 ∪ Ω̂2).

(4.55)

The proof is analogue to the one in [107], where the convergence of the Split
Bregman Iteration is shown.

If we solve the minimization problem in (4.55) exactly, for example, via the Split
Bregman Algorithm by setting formally Lk+1 = ∞, then the following convergence
property for Algorithm 4 holds:

Proposition 4.4.2. Let u
(k,∗)
1 be the exact solution of the minimization problem

in (4.55) for the k-th iteration. Then the sequence (u
(k,∗)
1)k generated by (4.54)

converges for k → ∞ to a solution u∗1 of (4.49).

The proof of this result can be found in [124].

4.4.3 Numerical Examples for Image Restoration

We present the implementation of the algorithm in (4.36) and of the algorithm
in (4.40) for the minimization of J . To solve its subiterations (4.47) we consider
two approaches: oblique thresholding, see Section 3.2.6, and the proposed BOS-SB
iteration. In the following we sketch the numerical implementation of the BOS-SB
algorithm for the domain Ω1 only, since the implementation is analogue for the other

4.4 Bregmanized Non-overlapping Domain Decomposition 115

domain by just adjusting the notations accordingly. Hence we denote u2 = u
(n,M)
2|Ω1∪Ω̂2

,

u1 = u
(n+1,ℓ+1)
1 , and z1 = u

(n+1,ℓ)
1 + πV1T

∗(g − Tu2 − Tu
(n+1,ℓ)
1) and we would like to

compute the minimizer

u1 = argmin
u∈V1

‖u− z1‖22 + 2α|∇(u+ u2)|(Ω1 ∪ Ω̂2). (4.56)

BOS-SB

Instead of using the oblique thresholding strategy we suggest to use Algorithm 4 to
solve the minimization problem (4.56). Hence the minimizer u1 is the limit of the

sequence (u
(k,Lk)
1)k generated by the algorithm in (4.54). The inner iteration of this

algorithm is the Split Bregman iteration, i.e.,







u
(k+1,l+1)
1 = arg min

u1∈V1⊕V̂2

1
2α
‖u1 − z1‖22 + λ

δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au

(k,Lk)
1 − f (k)))‖22

+µ‖d(k+1,ℓ) −∇(u1|Ω1∪Ω̂2
+ u2)− b(k+1,l)‖22

d(k+1,l+1) = argmind |d|ℓ1(Ω1∪Ω̂2)
+ µ‖d−∇(u

(k+1,l+1)
1|Ω1∪Ω̂2

+ u2)− b(k+1,l)‖22
b(k+1,l+1) = b(k+1,l) +∇(u

(k+1,l+1)
1|Ω1∪Ω̂2

+ u2)− d(k+1,l+1)

and is implemented as suggested in [69], with a small adaptation, since the distribu-
tional derivative of the sum of functions, i.e., ∇(u1|Ω1∪Ω̂2

+ u2), has to be considered

on each subdomain.

Domain decompositions

Sequential algorithm For the sequential algorithm we split the domain Ω ⊂ R
2,

i.e., the set of N1×N2 equidistant points on the 2-dimensional rectangle [a, b]× [c, d],
into horizontal stripes, i.e., with respect to its rows. In particular we have Ω1 =
[a, x⌈N1

2 ⌉]× [c, d] and Ω2 = [x⌈N1
2 ⌉+1

, b]× [c, d], compare Figure 4.12. The splitting

in more than two domains is done similarly, cf. also [66].

In both subminimization strategies we additionally have to introduce the stripes
Ω̂1 and Ω̂2 on the interfaces of the domain patches. These stripes arise naturally
from the splitting of the total variation (4.48). In case of oblique thresholding, the
stripe Ω̂1∪Ω̂2 defines the domain in which the η-computation (3.8) takes place. This
is motivated by the observation that η is only supported on Ω2 and that the, due
to the restriction to this strip, produced errors are in practice negligible, cf. [66] for
more details. In the other case when we use Algorithm 4 we just expand Ω1 by the
domain Ω̂1, in which an additional constraint is constituted, see (4.49) and (4.50).

116 Chapter 4: Domain Decomposition for Total Variation Minimization

a = x1

Ω1

x⌈N1/2⌉

——- ——- ∂Ω1 ∩ ∂Ω2 ——- ——-
x⌈N1/2⌉+1

Ω2

b = xN1

Figure 4.12: Decomposition of the discrete image in two domains Ω1 and Ω2 with interface
∂Ω1 ∩ ∂Ω2

Parallel algorithm The splitting in the parallel version of the algorithm is done
differently. While the choice of a different splitting for the parallel version has no
theoretical motivation (in fact all the theory holds true for arbitrary domain split-
tings), it shows that the domain decomposition algorithm and its implementation
are quite flexible with respect to the type of domain splitting.

For the parallel algorithm the discrete domain Ω = [a, b] × [c, d] is split with
respect to its rows and its columns. More precisely, we split Ω into powers of 4
rectangles, i.e., into 4, 16, 64, . . . rectangles. This is done as shown in Figure 4.13.
Note, that it is necessary to expand each of the subdomains by stripes around the
interfaces (as in the previous section).

Figure 4.13: Domain decomposition for the parallel algorithm in four subdomains Ωi,
i = 1, 2, 3, 4. The stripes for the subminimization on Ω1 are located around the interfaces
∂Ω1 ∩ ∂Ω2 and ∂Ω1 ∩ ∂Ω3.

4.4 Bregmanized Non-overlapping Domain Decomposition 117

Numerical Evaluation

We conclude this section with a numerical evaluation of the performance of the
newly proposed subminimization strategy in Algorithm 4, i.e, Bregmanized Operator
Splitting - Split Bregman (BOS-SB). To do so, we compare both the sequential- and
the parallel version of the non-overlapping domain decomposition algorithm, where
the subminimization problems are solved with iterative oblique thresholding (OT),
see Section 3.2.6, and with BOS-SB (4.54) as a subminimization solver respectively.
Here, we focus on its application to image inpainting. In this case the operator T is
given by the multiplier T = 1Ω\D, where D is a hole in the given image.

Let us first discuss the choice of the different parameters. In image inpainting
the regularizing parameter α is typically chosen very small, in order to reduce the
smoothing effect outside of the hole D. Hence, for the following inpainting examples
we have chosen α = 0.005. In the domain decomposition algorithm, we consider
domain splittings into N = 2, 3, 4, 5 for the sequential version, and N = 4, 16 for
the parallel version. The domain decomposition algorithm in (4.35) is iterated until
the error e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 is smaller than a certain tolerance tol, where
uorg is the original image. While this stopping criterion is rather unrealistic for
practical applications, it serves us as a good basis for comparing the computational
behaviour of the subminimization solvers. Note however, that in our experience the
choice of this tolerance has a slightly different impact on the domain decomposition
algorithm when we solve the subminimization problems with OT rather than BOS-
SB. We shall discuss this in more detail when presenting the numerical examples.

The number of subminimization iterations L andM has been chosen to optimize
the computation time for both OT and BOS-SB. In each subdomain we choose the
same number of subiteration, i.e., L =M =: sub. For OT it turned out that sub = 1
is optimal (see also [66]). For BOS-SB sub = 1 or sub = 4 subminimization iterations
give similar computational results in the sequential algorithm (see Table 4.4), while
sub = 4 performs noticeably better in the parallel version of the algorithm. The
reasons seem to be that each BOS-SB computation is much cheaper in terms of
computational time than the OT solution (cf. Table 4.2), but also that the BOS-
SB computation makes more progress in terms of decreasing the error e(n) in each
subspace iteration than OT does (cf. Figure 4.19).

Next, we discuss the parameter choice taken for the subminimization algorithms.
We start with oblique thresholding.

Parameter choice for oblique thresholding (OT) The choice of parameters
in the oblique thresholding algorithm and their reasoning is discussed in much de-
tail in [66]. In particular, in [66] this choice has been optimized with respect to
the computational efficiency of the domain decomposition algorithm, for both its
sequential (4.36) and its parallel (4.40) version. Therefore, we borrow the parame-
ter values from there and only report them here. The width of the stripe in which
the Lagrange multiplier η is computed is taken equal to 6 (this can be decreased or

118 Chapter 4: Domain Decomposition for Total Variation Minimization

increased depending on the size of the regularization parameter α; again see [66] for
a discussion on this). The fixed point algorithm for η either terminates when the
normalized ℓ2-distance between two subsequent iterates is smaller than tolη = 10−6

or after a maximal number of 10 iterations. The fixed point algorithm of Chambolle
[23] for the computation of the projection PαK(·) terminates when the normalized
ℓ2-distance between two subsequent iterates is smaller than tolp = 10−3.

Parameter choice for Bregmanized operator splitting - split Bregman
(BOS-SB) Algorithm 4, i.e., BOS-SB, consists of two nested iterations. The
outer iteration is the Bregmanized operator splitting (BOS) iteration Algorithm 3,
in which the corresponding minimization problem in each iteration is solved via the
Split Bregman (SB) algorithm (4.45) that is again solved iteratively (inner iteration).

The number of BOS-iterations has been chosen equal to 1. In fact, our numerical
tests confirm that there is absolutely no gain in terms of computational performance
when iterating more. In particular, the number of domain decomposition iterations
undertaken to reach a certain accuracy e(n) < tol is exactly the same when iterating
BOS once or iterating twice or more. The reason for this is that we chose the
parameter λ/δ in front of the Bregman fidelity term ‖u− (u(k,Lk) − δA∗(Au(k,Lk) −
f (k)))‖22 very small, i.e., λ/δ = 10−8/2. Although this means that we ensure the
constraint Au = 0 very loosely only, this is adjusted by the reconsideration of this
constraint in every domain decomposition iteration. Moreover, note that the BOS-
iterations are proven to converge for every choice of the parameters λ, δ > 0, cf.
Proposition 4.4.2.

The Split Bregman algorithm (4.45) is solved with µ = 10 and iterated until
the normalized ℓ2-distance of two subsequent iterates u(l) and u(l+1) is smaller than
10−3. This choice has been made comparable to the tolerance for the Chambolle
algorithm in the previous paragraph.

Numerical results - sequential algorithm We present numerical results for
the sequential and the parallel version of the domain decomposition algorithm in
(4.35), in which we compare the performance of OT and BOS-SB in terms of quality
of the inpainting results and the computational time needed to achieve them. The
numerical examples presented here have been computed on a 2×3.2 GHz-Quad-Core
MacPro. In Figure 4.14(a) we start our numerical discussion with an inpainting task
for an image of size 270 × 167. The decompositions of the image domain into N
subdomains are done differently for the sequential and the parallel version of the
algorithm, see above. For further reference, we plotted the decompositions for the
image in Figure 4.14(a) in N = 4 domains for the sequential and parallel case in
Figure 4.14(b) and 4.14(c) respectively.

In Figure 4.15 we apply the sequential domain decomposition algorithm in (4.36)
with N = 5 subdomains for inpainting the image in 4.14(a). The inpainting results
computed with OT and with BOS-SB are presented in Figure 4.15(a) and 4.15(b)
respectively.

4.4 Bregmanized Non-overlapping Domain Decomposition 119

(a) Vandalized image

(b) Splitting for the sequential algorithm (c) Splitting for the parallel algorithm

Figure 4.14: The vandalized image and its domain splitting for the sequential and the
parallel version of the algorithm for N = 4 domains.

120 Chapter 4: Domain Decomposition for Total Variation Minimization

(a) Image inpainted with OT (b) Image inpainted with BOS-SB

Figure 4.15: Inpainting with the sequential version of domain decomposition (4.36) in
N = 5 subdomains: (a) inpainted image with OT used to solve the subminimization prob-
lems; (b) inpainted image with BOS-SB used to solve the subminimization problems.

For a first comparison between the two algorithms, we report their computational
speed for solving one subspace minimization averaged over the first 100 domain de-
composition iterations in Table 4.2. For the OT algorithm, we have to differ between
the subdomains, which are at the border of the image domain, i.e., the first and the
last stripe in Figure 4.14(b), and the ones which are in the inner part of the image
domain. The subdomains on the borders share only one interface with the neigh-
bouring subdomain, resulting in only one η-iteration (3.8), while the other ones
require the solution of two η-iterations on the lower and upper interfaces. Conse-
quently, the solution of the subspace minimization problem with OT for the border
elements is a bit faster than its solution for the inner elements. In either case, BOS-
SB by far outperforms the OT algorithm in terms of computational speed. BOS-SB
is about three times faster than OT in the computation of one subminimization
problem.

Next we compare OT and BOS-SB in their ability to solve the domain decom-
position problem accurately and fast. To do so, we first have to find a reasonable
basis for comparison. In particular, we have to find the right stopping criterion.
One standard choice for stopping an algorithm is to check the distance between two
subsequent iterates, i.e., the value of ‖u(n+1) − u(n)‖2. If this value is smaller than a
prescribed tolerance, i.e., if we are close to a fixed point of the algorithm, then the
iteration is stopped and the current iterate is accepted as a good approximation to
the minimizer. While this is a good criterion for stopping an algorithm, it is not a
good one for comparing two algorithms with each other. The iterative behaviour of
two algorithms can be very different and being close to a fixed point does not nec-
essarily mean that the algorithm is close to the desired solution. The next generic
choice then is the value of the energy evaluated in the iterates. But again, the energy
value does not seem to be applicable too, because, although the energies decrease,

4.4 Bregmanized Non-overlapping Domain Decomposition 121

OT BOS-SB

N = 2: ø CPU time / iteration 0.6 s 0.2 s

N = 3: ø CPU time / iteration 0.52 s (border), 0.74 s (in-
ner)

0.17 s

N = 4: ø CPU time / iteration 0.46 s (border), 0.72 s (in-
ner)

0.14 s

N = 5: ø CPU time / iteration 0.46 s (border), 0.72 s (in-
ner)

0.14 s

Table 4.2: Computational performance of the subminimization solvers in the sequential
version of the domain decomposition algorithm in (4.36) with N subdomains for inpainting
of Figure 4.14(a): CPU times are compared for the OT strategy and the proposed Breg-
man Operator Splitting - Split Bregman strategy (BOS-SB) Algorithm 4. The reported
CPU time is the time in seconds needed for one subspace minimization, averaged over the
subdomains and over the first 100 domain decomposition iterations. For the evaluation of
the OT algorithm one has to defer between a subminimization problem on the border of the
image domain (only one interface and hence only one η-iteration) and a subminimization
problem in the inner of the image domain (two interfaces and hence two η-iterations).

the energy values seem to be different for the two algorithm, cf. Figure 4.16.
For image inpainting one quality measure is, how close the inpainted image is

to the original image. While the original image is usually unknown in practice, for
the comparative tests we are running, it seems to be a good measure for comparing
the computational time of the two algorithms to reach a certain qualitative result.
More precisely, let e(n) = ‖uorg − u(n)‖2/‖u(n)‖2, n = 1, 2, . . . be the error between
the current iterate u(n) and the original image uorg. The algorithms are stopped
when e(n) falls below a certain tolerance tol the first time. We stick to this choice
for a quality measure and a stopping criterion for the two algorithms, although we
again have to adapt the target tolerance to the two algorithms, cf. Figure 4.17.

Moreover, in Figure 4.18 we check the respective inpainting results in detail for
the chosen tolerances tol1 = 0.02662 for OT domain decomposition and tol2 = 0.0225
for BOS-SB domain decomposition. The inpainting results seem to be comparable
for these choices of stopping criteria.

From our numerical discussion up to now we have seen the BOS-SB is three times
faster than OT in each subminimization problem, cf. Table 4.2, but that BOS-SB
needs a larger number of iterations to achieve the same quality in the inpainting
result as OT. What is the effect of these two subminimization strategies onto the
performance of the domain decomposition algorithm as a whole? Looking at Figure
4.19 and Table 4.3 one immediately sees that the domain decomposition algorithm
with BOS-SB is faster than OT, where the computational advantage of BOS-SB
increases with the number of subdomains. In particular, a surprising result for us

122 Chapter 4: Domain Decomposition for Total Variation Minimization

Figure 4.16: Decrease of the energy J (4.1) for the OT algorithm and BOS-SB iter-
ation, shown for the iterative minimization of J on the whole domain and the domain
decomposition iteration with N = 5 subdomains.

was, that the CPU time for the sequential version of the algorithm computed with
BOS-SB is - in contrast to the same computation with OT - only slightly increasing.
Note, that we have not parallelized our computations yet.

Numerical results - parallel algorithm Finally, we also compare the parallel
performance of the domain decomposition algorithm when computed with OT and
BOS-SB. Note, that for the sequential version it turned out that solving the sub-
minimization problems (4.47) with sub = 1 or sub = 4 BOS-SB computations does
not make a significant difference in terms of computational time needed to solve the
inpainting task with the domain decomposition algorithm, cf. Table 4.4. We take
advantage of this fact for the parallel computations. Here, choosing sub = 4 and
making more progress in each domain decomposition iteration with approximately
the same computational effort, reduces the computational time as a whole because
we reduce the number of domain decomposition iterations and hence, the amount
of communication we have to do between the processes. As already discussed in
[66], this strategy cannot be applied for the domain decomposition algorithm solved
with OT. For the parallel computations we therefore choose sub = 1 for the algo-
rithm with OT and sub = 4 for the algorithm solved with BOS-SB. See Table 4.5
and Figure 4.20 for the computational results for inpainting of the image in Figure
4.14(a).

We also test the parallel BOS-SB domain decomposition algorithm for a vandal-
ized image of size 1768× 2656 pixels, see Figure 4.21, where we decomposed it into

4.4 Bregmanized Non-overlapping Domain Decomposition 123

(a) OT iterate with e(100) = 0.0333 (b) BOS-SB iterate with e(200) =
0.0290

(c) OT iterate with e(160) = 0.0277 (d) BOS-SB iterate with e(300) =
0.0241

(e) OT iterate with e(220) = 0.02663 (f) BOS-SB iterate with e(400) = 0.0224

Figure 4.17: Intermediate results of the inpainting result in Figure 4.15. The error e(n) in
the sequential domain decomposition algorithm (4.36) evolves differently when computed
with OT and when computed with BOS-SB.

124 Chapter 4: Domain Decomposition for Total Variation Minimization

(a) OT with tol1 = 0.0225 (b) BOS-SB with tol2 =
0.0225

(c) Original image

Figure 4.18: Detail of the inpainting result in Figure 4.15 and the original image. The
sequential domain decomposition algorithm (4.36) with OT stops after 620 iterations with
an error e(620) = 0.02662, while the same algorithm with BOS-SB used for solving the
subminimization problems terminates after 406 iterations with an error of e(406) = 0.0225.
Again the error e(n) = ‖uorg − u(n)‖2/‖u(n)‖2.

4.4 Bregmanized Non-overlapping Domain Decomposition 125

Figure 4.19: Error decrease for inpainting of Figure 4.14(a) with the sequential version
of the domain decomposition (4.36) in N = 4 subdomains: in each domain decomposition
iteration we measure the error between the original and the inpainted image, i.e., e(n) =
‖uorg − u(n)‖2/‖u(n)‖2 for iterations n = 1, 2, . . . 372. While the OT error decreases much
faster at the beginning than the error in BOS-SB, it slows down as iterations progress and
BOS-SB catches up.

126 Chapter 4: Domain Decomposition for Total Variation Minimization

domains OT BOS-SB (sub= 1)

N = 2 223 iterations / 263.32 CPU s 399 iterations / 192.02 CPU
s

N = 3 290 iterations / 510.45 CPU s 405 iterations / 210.38 CPU
s

N = 4 843 iterations / 2004.82 CPU s 372 iterations / 210 CPU s

N = 5 224 iterations / 636.65 CPU s 394 iterations / 242.39 CPU
s

N = 6 245 iterations / 817.45 CPU s 375 iterations / 251.62 CPU
s

Table 4.3: Inpainting for Figure 4.14(a): comparison of computational performance for
the sequential version of the domain decomposition algorithm in (4.36) for using iter-
ative thresholding versus BOS-SB to solve the subminimization problems. The domain
decomposition algorithm with OT has been run until e(n) < tol1 = 0.02662, the domain
decomposition algorithm with BOS-SB terminated when e(n) < tol2 = 0.0225. When in-
creasing the number of subdomains N , the CPU time seem to increase tremendously for
OT, while the computational time for BOS-SB only slightly increases.

domains BOS-SB (sub= 1) BOS-SB (sub=4)

N = 2 399 iterations / 192.02 CPU
s

102× 4 iterations / 191.18 CPU s

N = 3 405 iterations / 210.38 CPU
s

103× 4 iterations / 206.8 CPU s

N = 4 372 iterations / 210 CPU s 95× 4 iterations / 208.69 CPU s

N = 5 394 iterations / 242.39 CPU
s

101× 4 iterations / 245.54 CPU s

N = 6 375 iterations / 251.62 CPU
s

95× 4 iterations / 247.86 CPU s

Table 4.4: Inpainting for Figure 4.14(a): comparison of computational performance for
the sequential version of the domain decomposition algorithm in (4.36) solved with BOS-
SB with sub = 1 subminimization iteration (4.47) and with sub = 4 subminimization
iterations.

4.4 Bregmanized Non-overlapping Domain Decomposition 127

domains OT BOS-SB

N = 4 161 iterations / 135.87 CPU s
(reached accuracy e(k) = 0.029)

92 × 4 iterations / 65.95 CPU s
(reached accuracy e(k) = 0.025)

Table 4.5: Inpainting for Figure 4.14(a): comparison of computational performance for
the parallel version of the domain decomposition algorithm in (4.40) for using OT versus
BOS-SB to solve the subminimization problems.

Figure 4.20: Error decrease for inpainting of Figure 4.14(a) with the parallel version of
domain decomposition (4.40) in four subdomains: in each domain decomposition iteration
we measure the error between the original and the inpainted image, i.e., e(n) = ‖uorg −
u(n)‖2/‖u(n)‖2 for iterations n = 1, 2, . . . 1000. The final error of OT is e(1000) = 0.028,
while the error in BOS-SB in the final iteration is e(1000) = 0.0246.

128 Chapter 4: Domain Decomposition for Total Variation Minimization

Figure 4.21: Inpainting with the parallel domain decomposition strategy (4.40): (l.) the
vandalized image of size 1768 × 2656 pixels; (m.) its decomposition into four domains;
(r.) the restored image computed with (4.40)

domains BOS-SB

N = 1 279 iterations / ≈ 15.8 CPU h

N = 4 192 × 4 iterations / ≈ 3.26 CPU
h

N = 16 172× 4 iterations / ≈ 2.2 CPU h

Table 4.6: Inpainting for the 1768×2656 image in Figure 4.21: computational performance
for the parallel version of the domain decomposition algorithm in (4.40) when using BOS-
SB to solve the subminimization problems.

four non-overlapping domains in order to restore it on multiple processors. A com-
parison with respect to the computation time for different numbers of subdomains
is shown in Table 4.6. There we see that by increasing the number of domains, the
number of iterations and the CPU time decrease.

Bibliography

[1] V.I. Agoshkov and V.I. Lebedev, Poincare-Steklov operators and the methods
of partition of the domain in variational problems, In G.I. Marchuk (ed.),
Computational Processes and Systems, no. 2, Nauka, Moscow, 1985, pp.
173–227 [Russian].

[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation
and free discontinuity problems., Oxford Mathematical Monographs. Oxford:
Clarendon Press. xviii, 2000.

[3] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing.
Partial Differential Equations and the Calculus of Variation, Springer, 2002.

[4] W. Baatz, M. Fornasier, P. Markowich, C.-B. Schönlieb, Inpainting of ancient
Austrian frescoes, Conference proceedings of Bridges 2008, Leeuwarden, pp.
150–156, 2008.

[5] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and J. Verdera, Filling-in
by joint interpolation of vector fields and grey levels, IEEE Transactions on
Image Processing, vol. 10, no. 8, pp. 1200–1211, 2001.

[6] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces,
1996.

[7] H. H. Bauschke, J. M Borwein, and A. S. Lewis, The method of cyclic pro-
jections for closed convex sets in Hilbert space. Recent developments in opti-
mization theory and nonlinear analysis, (Jerusalem, 1995), 1–38, Contemp.
Math., 204, Amer. Math. Soc., Providence, RI, 1997

[8] A. Beck and M. Teboulle, Fast iterative shrinkage-thresholding algorithm for
linear inverse problems, SIAM J. Imaging Sciences 2, 2009, pp. 183–202

[9] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image Inpainting, In
Computer Graphics Proceedings of SIGGRAPH 2000, 2000

[10] M. Bertalmio, L. Vese, G. Sapiro, S. Osher, Simultaneous structure and tex-
ture image inpainting, UCLA CAM Report 02-47, July 2002.

129

130 Bibliography

[11] J.-F. Bourgat, R. Glowinski, P. Le Tallec, and M. Vidrascu, Variational
formulation and algorithm for trace operator in domain decomposition calcu-
lations, In T.F. Chan et al. (eds.), Domain Decomposition Methods, SIAM,
Philadelphia, 1989, pp. 3–16

[12] A. Braides, Γ-Convergence for Beginners, No.22 in Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2002.

[13] K. Bredies and D. Lorenz, Linear convergence of iterative soft-thresholding,
J. Fourier Anal. Appl. 14(5-6), 2008, pp. 813-837.

[14] L. Bregman, A relaxation method of finding a common point of convex sets
and its application to the solution of convex programming problems. J. Wych.
Math. and Math.Phys. 7(620-631), 1967, pp. 200–217

[15] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accre-
tive operators in Banach spaces. Houston J. Math. 3(4), 1977, pp. 459–470

[16] E. J. Candès, Compressive sampling, Int. Congress of Mathematics, 3, pp.
1433-1452, Madrid, Spain, 2006

[17] E. J. Candès, J. Romberg, and T. Tao, Exact signal reconstruction from
highly incomplete frequency information, IEEE Trans. Inf. Theory 52(2),
2006, pp. 489–509.

[18] E. J. Candès and T. Tao, Near Optimal Signal Recovery From Random Pro-
jections: Universal Encoding Strategies?, IEEE Trans. Inf. Theory 52(12),
2006, pp. 5406–5425.

[19] J.-F. Cai, S. Osher, and Z. Shen, Linearized Bregman Iterations for com-
pressed sensing, Math. Comp. 78(267), 2009, pp. 1515–1536

[20] J.-F. Cai, S. Osher, and Z. Shen, Convergence of the Linearized Bregman
Iteration for ℓ1-norm minimization, Math. Comp. 78, 2009, pp. 2127–2136

[21] C. Carstensen, Domain decomposition for a non-smooth convex minimaliza-
tion problems and its application to plasticity, Numerical Linear Algebra with
Applications 4(3), 1998, pp. 177–190.

[22] E. Casas, K. Kunisch, and C. Pola, Some Applications of BV Functions in
Optimal Control and Calculs of Variations, ESAIM: Proceedings Contrôle et
Équations aux Dérivées Partielles 4, 1998, pp. 83–96

[23] A. Chambolle, An algorithm for total variation minimization and applica-
tions, J. Math. Imaging Vision 20(1-2), 2004, pp. 89–97.

[24] A. Chambolle, An algorithm for Mean Curvature Motion, Interfaces and Free
Boundaries 6, 2004, pp. 195–218.

Bibliography 131

[25] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An Intro-
duction to Total Variation for Image Analysis. In M. Fornasier (ed.), Theoret-
ical Foundations and Numerical Methods for Sparse Recovery, Radon Series
on Computational and Applied Mathematics, De Gruyter Verlag, 2010, pp.
263-340.

[26] A. Chambolle, J. Darbon, On total variation minimization and surface evolu-
tion using parametric maximum flows, Int. J. Comput. Vis. 84, 2009, 288–307

[27] A. Chambolle and P.-L. Lions, Image recovery via total variation minimiza-
tion and related problems., Numer. Math. 76(2), 1997, pp. 167–188.

[28] R. H. Chan, C.-W. Ho, and M. Nikolova, Salt-and-Pepper Noise Removal by
Median-Type Noise Detectors and Details-Preserving Regularization, IEEE
Transactions on Image Processing 14(10), 2005, pp. 1479–1485.

[29] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for
total variation-based image restoration, SIAM J. Sci. Comput. 20(6), 1999,
pp. 1964–1977.

[30] T. F. Chan, and T. P. Mathew, Domain decomposition algorithms, Acta
Numerica 3, 1994, pp. 61–143.

[31] T. F. Chan and J. Shen, Mathematical models for local non-texture inpaint-
ings, SIAM J. Appl. Math., 62(3),2001, pp. 1019–1043.

[32] T. F. Chan and J. Shen, Nontexture inpainting by curvature driven diffusions
(CDD), J. Visual Comm. Image Rep. 12(4), 2001, pp. 436449.

[33] T. F. Chan and J. Shen, Image Processing and Analysis: Variational, PDE,
Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005

[34] P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, Classics
Appl. Math. 40, SIAM, Philadelphia, 2002

[35] J. P. Cocquerez, L. Chanas, and J. Blanc-Talon, Simultaneous Inpainting and
Motion Estimation of Highly Degraded Video-Sequences, Preprint, 2001.

[36] A. Cohen, Numerical Analysis of Wavelet Methods., Studies in Mathematics
and its Applications 32. Amsterdam: North-Holland., 2003.

[37] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic Analysis
of the space BV, Rev. Mat. Iberoamericana 19, 2003, pp. 235–263.

[38] A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear Approximation
and the space BV(R2), Amer. J. Math. 121, 1999, pp. 587–628.

132 Bibliography

[39] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-
backward splitting, Multiscale Model. Simul. 4(4), 2005, pp. 1168–1200.

[40] G. David, Global Minimizers of the Mumford-Shah Functional, Current de-
velopments in mathematics, 1997 (Cambridge, MA), Int. Press, Boston, MA,
1999, pp. 219–224.

[41] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[42] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm
for linear inverse problems, Comm. Pure Appl. Math. 57(11), 2004, pp. 1413–
1457. Regularization

[43] I. Daubechies, R. DeVore, M. Fornasier, and S. Güntürk, Iteratively re-
weighted least squares minimization for sparse recovery, Commun. Pure Appl.
Math. 63(1), 2010, pp. 1-38.

[44] I. Daubechies, M. Fornasier, and I. Loris, Acceleration of the projected gra-
dient method for linear inverse problems with sparsity constraints, J. Fourier
Anal. Appl. 14(5-6), 2008, pp. 764–792.

[45] I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse
problems under general convex constraints, Inverse Probl. Imaging 1(1), 2007,
pp. 29–46.

[46] J. Darbon and M. Sigelle, A fast and exact algorithm for total variation
minimization, IbPRIA 2005 3522(1), 2005, pp. 351-359.

[47] J. Darbon and M. Sigelle, Image Restoration with Discrete Constrained Total
Variation Part I: Fast and Exact Optimization, J. Math. Imaging and Vision
26(3), 2006, pp. 261-276.

[48] G. Dal Maso, An Introduction to Γ-Convergence, Birkhäuser, Boston, 1993.

[49] E. De Giorgi, Convergence problems for functionals and operators, Recent
methods in nonlinear analysis, Proc. Int. Meet., Rome 1978, 1979, pp. 131-
188.

[50] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale, Atti
Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68, 1975, pp. 842-850.

[51] D. Dobson and C. R. Vogel, Convergence of an iterative method for total
variation denoising, SIAM J. Numer. Anal. 34(5), 1997, pp. 1779–1791.

[52] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52(4), 2006,
pp. 1289–1306.

Bibliography 133

[53] I. Ekeland and R. Temam, Convex analysis and variational problems. Trans-
lated by Minerva Translations, Ltd., London., Studies in Mathematics and its
Applications. Vol. 1. Amsterdam - Oxford: North-Holland Publishing Com-
pany; New York: American Elsevier Publishing Company, Inc., 1976.

[54] G. Emile-Male, The Restorer’s Handbook of Easel Painting, Van Nostrand
Reinhold, New York, 1976

[55] H.W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems.,
Mathematics and its Applications (Dordrecht). 375. Dordrecht: Kluwer Aca-
demic Publishers., 1996.

[56] S. Esedoglu and J. Shen, Digital image inpainting by the Mumford - Shah -
Euler image model, European J. Appl. Math. 13 , 2002, pp. 353370.

[57] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Func-
tions., CRC Press, 1992.

[58] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse
problems, IEEE Journal of Selected Topics in Signal Processing, Special Issue
on Convex Optimization Methods for Signal Processing 1(4), 2007, pp. 586–
598.

[59] K. Frick and O. Scherzer, Regularization of Ill-Posed Linear Equations by the
Non-stationary Augmented Lagrangian Method, J. Integral Equations Appl.
22(2), 2010, pp. 217–257.

[60] G. B. Folland, Real Analysis: Modern Techniques and Their Applications,
Wiley, New York, 1999

[61] M. Fornasier, Domain decomposition methods for linear inverse problems with
sparsity constraints, Inverse Problems 23, 2007, pp. 2505–2526.

[62] M. Fornasier, Numerical Methods for Sparse Recovery, Theoretical Founda-
tions and Numerical Methods for Sparse Recovery (M. Fornasier, ed.), Radon
Series on Computational and Applied Mathematics, De Gruyter Verlag, 2010.

[63] M. Fornasier,Y. Kim, A. Langer, and C.-B. Schönlieb,Wavelet Decomposition
Method for L2/TV-Image Deblurring, 2011, preprint.

[64] M. Fornasier, A. Langer, and C.-B. Schönlieb, A convergent overlapping
domain decomposition method for total variation minimization, Numerische
Mathematik 116(4), 2010, pp. 645–685.

[65] M. Fornasier and R. March, Existence of minimizers of the Mumford and
Shah functional with singular operators in two space dimensions, submitted
to SIAM J. Math. Anal., March 2010, pp. 27.

134 Bibliography

[66] M. Fornasier and C.-B. Schönlieb, Subspace correction methods for total vari-
ation and ℓ1-minimization, SIAM J. Numer. Anal. 47(5), 2009, pp. 3397–3428

[67] M. Fornasier and R. Ward, Iterative thresholding meets free-discontinuity
problems, Found. Comput. Math. 10(5), 2010, pp. 527–567.

[68] S. Geman and D. Geman, Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Retoration of Images, IEEE Trans. PAMI PAMI-6, 1984, pp.
721–741.

[69] T. Goldstein, S. Osher, The split Bregman method for L1 regularized problems,
UCLA CAM Report 08-29, 2008.

[70] M. Grassmair, M. Haltmeier, and O. Scherzer, Sparse regularization with ℓq

penalty term, Inverse Problems 24, 2008, pp. 113.

[71] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization
Algorithms I, Vol. 305 of Grundlehren der mathematischen Wissenschaften,
Springer-Verlag: Berlin, 1996

[72] K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems
and Applications, Series: Advances in Design and Control (No. 15) SIAM,
2008

[73] S.-H. Kang, T.-F. Chan, and S. Soatto, Landmark based inpainting from
multiple views, UCLA CAM Report 02-11, March 2002.

[74] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, A Method for ℓ1-
regularized least squares, IEEE Journal of Selected Topics in Signal Processing
1(4), 2007, pp. 606–617

[75] A. Langer, Convergence Analysis of a Nonoverlapping Domain Decomposition
Algorithm for Total Variation Minimization, 2009, preprint.

[76] A. Langer, S. Osher, and M. Fornasier, Bregmanized Domain Decomposition
for Image Restoration, submitted to Journal of Scientific Computing, pp. 25.

[77] P.-L. Lions, On the Schwarz alternating method I. In R. Glowinski, G.H.
Golub, G.A. Meurant, J. Périaux (eds.), First International Symposium on
Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, PA, 1988, pp. 1–42.

[78] P.-L. Lions, On the Schwarz Alternating Method II: Stochastic Interpreta-
tion and Order Properties. In: T.F. Chan, R. Glowinski, J. Priaux, O.B.
Widlund (eds.), Proceedings of the 2nd International Conference on Domain
Decomposition Methods, SIAM, Philadelphia, PA, 1989, pp. 47–70.

Bibliography 135

[79] P.-L. Lions, On the Schwarz Alternating Method III: a variant for non-
overlapping subdomains. In T.F. Chan et al. (eds), Third International Sym-
posium on Domain Decomposition Methods for Partial Differential Equa-
tions, SIAM, Philadelphia, pp. 202–231.

[80] I. Loris, On the performance of algorithms for the minimization of 1-penalized
functionals, Inverse Problems 25, 2009.

[81] M. Lustig, D. Donoho, and J. M. Pauly, Sparse MRI: The application of
compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine
58(6), 2007, pp. 1182–1195.

[82] F. Maddalena and S. Solimini, Lower semicontinuity properties of functionals
with free discontinuities, Arch. Ration. Mech. Anal. 159(4), 2001, pp. 273–
294.

[83] F. Malgouyres, Increase in the resolution of digital images: Variational theory
and applications. Doctoral dissertation, Ecole Normale Suprieure de Cachan,
Cachan, France, 2000.

[84] F. Malgouyres and F. Guichard, Edge direction preserving image zooming:
A mathematical and numerical analysis, SIAM J. Numer. Anal. 39(1), 2001,
pp. 137.

[85] L. D. Marini and A. Quarteroni, A relaxation procedure for domain decom-
position methods using finite elements, Numer. Math. 55, 1989, pp. 575–598

[86] S. Masnou and J.-M. Morel, Level-lines based disocclusion, Proceedings of the
1998 IEEE International Conference on Image Processing (ICIP-98), Chicago,
Illinois, October 4-7, 1998, vol. 3, pp. 259263. IEEE Computer Society, 1998.

[87] J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation,
Birkhäuser, Boston, 1995.

[88] J. Müller, Parallel Methods for Nonlinear Imaging Techniques, Master thesis,
University of Münster, 2008.

[89] D. Mumford and J. Shah, Optimal Approximation by Piecewise Smooth Func-
tions and Associated Variational Problems, Comm. Pure Appl. Math. 42,
1989, pp. 577–685.

[90] Y. Nesterov, A method for unconstrained convex minimization problem with
the rate of convergence O(1

k2
), Doklady AN SSSR (translated as Soviet Math.

Docl.) 269, 1983, pp. 543–547.

[91] Y. Nesterov, Introductory Lectures on Convex Optimization: A basic course,
Kluwer, Boston, 2004

136 Bibliography

[92] Y. Nesterov, Smooth minimization of non-smooth functions. Mathematic Pro-
gramming, Ser. A 103, 2005, pp. 127–152.

[93] M. Nitzberg, D.Mumford, and T. Shiota, Filtering, Segmentation, and Depth,
Springer-Verlag, Lecture Notes in Computer Science, 662, Berlin-New York,
1993

[94] T. Ohtsuka, K. Shirakawa, and N. Yamazaki, Optimal control problem for
Allen-Cahn type equation associated with total variation energy, MIMS Tech-
nical Report No.00023 (200912221), 2009, pp. 28.

[95] Z. Opial, Weak convergence of the sequence of successive approximations for
nonexpansive mappings, Bull. Amer. Math. Soc. 73, 1967, pp. 591–597.

[96] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regular-
ization method for total variation-based image restoration, Multiscale Model.
Simul. 4(2), 2005, pp. 460–489.

[97] S. Osher, Y. Mao, B. Dong, W. Yin, Fast Linearized Bregman Iteration for
compressed sensing and sparse denoising, Comm. Math. Sci. 8(1), 2010, pp.
93–111.

[98] T. Pock, M. Unger, D. Cremers, and H. Bischof, Fast and Exact Solution
of Total Variation Models on the GPU, In Computer Vision and Pattern
Recognition, 2008, pp. 1-8.

[99] T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for Mini-
mizing the Mumford-Shah Functional, In ICCV Proceedings, LNCS, Springer,
2009

[100] A. Quarteroni and A. Valli, Domain decomposition methods for partial dif-
ferential equations, Numerical Mathematics and Scientific Computation, The
Clarendon Press Oxford University Press, Oxford Science Publications, New
York, 1999.

[101] R.T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics,
Princeton University Press, Princeton, 1970.

[102] R.T. Rockafellar and R.J.B. Wets, Variational analysis, Grundlehren der
Mathematischen Wissenschaften, vol. 317, Springer-Verlag, Berlin, 1998.

[103] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise
removal algorithms, Physica D 60(1-4), 1992, pp. 259–268.

[104] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, F. Lenzen, Vari-
ational Methods in Imaging, Applied Mathematical Sciences, vol. 167,
Springer, New York, 2009.

Bibliography 137

[105] C.-B. Schönlieb, Modern PDE Techniques for Image Inpainting, PhD-Thesis,
University of Cambridge, 2009

[106] H.W. Schwarz, Über einige Abbildungsaufgaben, J. Reine Angew. Meth. 70,
pp. 105–120.

[107] S. Setzer, Split Bregman Algorithm, Douglas-Rachford Splitting and Frame
Shrinkage. In X.-C. Tai et al. (ed.), Proceedings of the Second International
Conference on Scale Space Methods and Proceedings of the 2nd International
Conference on Scale Space and Variational Methods in Computer Vision,
LNCS, vol. 5567, Springer, Berlin, 2009, pp. 464-476.

[108] X.-C. Tai and P. Tseng, Convergence rate analysis of an asynchronous space
decomposition method for convex minimization, Math. Comp. 71(239), 2001,
pp. 1105–1135.

[109] X.-C. Tai and J. Xu, Global convergence of subspace correction methods for
convex optimization problems, Math. Comp. 71(237), 2002, pp. 105–124.

[110] G. Teschke and R. Ramlau, An Iterative Algorithm for Nonlinear Inverse
Problems with Joint Sparsity Constraints in Vector Valued Regimes and an
Application to Color Image Inpainting, Inverse Problems 23, 2007, pp. 1851–
1870.

[111] A. Toselli and O.Widlund, Domain Decomposition Methods - Algorithms and
Theory, Springer Series in Computational Mathematics, Springer, Berlin,
2005

[112] A. Tsai, J. A. Yezzi, and A. S. Willsky, Curve evolution implementation of the
Mumford-Shah functional for image segmentation, denoising, interpolation,
and magnification, IEEE Trans. Image Process. 10(8), 2001, pp. 11691186.

[113] L. Vese, A study in the BV space of a denoising-deblurring variational prob-
lem., Appl. Math. Optim. 44, 2001, pp. 131–161.

[114] L. A. Vese and S. J. Osher, Modeling textures with total variation minimiza-
tion and oscillating patterns in image processing, UCLA CAM Report 02-19,
May 2002.

[115] C.R. Vogel, M.E. Oman, Iterative methods for total variation denoising,
SIAM J. Sci. Comput. 17(1), 1996, pp. 227–238

[116] C. Vonesch and M. Unser, A Fast multilevel algorithm for wavelet-regularized
image restoration, IEEE Transactions on Image Processing 18(3), 2009, pp.
509–523.

[117] S. Walden, The Ravished Image, St. Martin’s Press, New York, 1985

138 Bibliography

[118] J. Warga, Minimizing certain convex functions, J. Soc. Indust. Appl. Math.
11, 1963, pp. 588–593.

[119] P. Weiss, L. Blanc-Féraud, and G. Aubert, Efficient schemes for total varia-
tion minimization under constraints in image processing, SIAM J. Sci. Com-
put. 31(3), 2009, pp. 2047-2080.

[120] J. Xu, The method of subspace corrections, J. Comp. Appl. Math. 128, 2001,
pp. 335–362

[121] J. Xu, X.-C. Tai and L.-L. Wang, A Two-level domain decomposition method
for image restoration, UCLA Computational and Applied Mathematics Re-
port 09-92, November 2009.

[122] W. Yin, Analysis and generalization of the linearized Bregman method, Rice
University CAAM Technical Report TR09-02, 2009

[123] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms
for ℓ1-minimization with applications to compressed sensing, SIAM J. Imag.
Sci. 1(1), 2008, pp. 143–168.

[124] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized Nonlocal Reg-
ularization for Deconvolution and Sparse Reconstruction, SIAM J. Imag. Sci.
3(3), 2010, pp. 253–276.

[125] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for
total variation image restoration, UCLA, Center for Applied Math., CAM
Reports 08-34, 2008.

[126] Matlab code and numerical experiments of the overlap-
ping and non-overlapping domain decomposition methods pro-
vided in this thesis can be downloaded at the web-page:
http://homepage.univie.ac.at/carola.schoenlieb/webpage_tvdode/tv_

dode_numerics.htm

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe.

Linz, Juli 2011

Andreas Langer

139

140

Curriculum Vitae

Name: Andreas Langer

Citizenship: Austrian

Date of Birth: April 1 1981

EDUCATION

Feb. 2008 - present Ph.D. student at Johannes Kepler Universität Linz,
Austria

Sept. 2006 Master degree in Technichal Mathematics (with dis-
tinction), Johannes Kepler Universität Linz, Austria

Oct. 2000 - Sept. 2006 Studies in Technical Mathematics, Johannes Kepler
Universität Linz, Austria

June 1999 High School Diploma (Matura), Gymnasium und Re-
algymnasium des Schulvereines Kollegium Aloisianum,
Linz, Austria

POSITIONS

Feb. 2008 - present Research assistant at Johann Radon Institute for Com-
putational and Applied Mathematics, Group “Analy-
sis of Partial Differential Equations”, Linz, Austria

July 2007 - Jan. 2008 Employee at Raiffeisen Landesbank Oberösterreich /
Treasury Middle Office, Linz, Austria

Nov. 2006 - June 2007 Research assistant at the Institute for Analysis/Group
Dynamical Systems and Approximation Theory, Jo-
hannes Kepler Universität Linz, Austria

OTHER INVITED RESEARCH VISITS

Jan. 24 - Jan. 29 2011 Department of Applied Mathematics and Theoretical
Physics (DAMPT), University of Cambridge, United
Kingdom

141

142 Curriculum Vitae

March 22 - March 26 2010 Institute of Numerical and Applied Mathematics, Georg-
August Universität, Göttingen, Germany

Sept. 15 - Dec. 15 2009 Department of Mathematics, University of California,
Los Angeles (UCLA), U.S.A.

PUBLICATIONS

Submitted preprints to refereed journals

1. Langer, A., Osher, S., and Schönlieb, C.-B.: Bregmanized Domain Decompo-
sition Methods for Image Restoration, submitted to J. Scientific Computing,
May 2011, 25 pp.

2. Fornasier, M., Kim, Y., Langer, A., and Schönlieb, C.-B.: Wavelet Decompo-
sition Method for L2/TV-Image Deblurring, submitted to SIAM J. Imaging
Sciences, Jan 2011, 19 pp.

Refreed journal papers

3. Fornasier, M., Langer, A., and Schönlieb, C.-B.: A Convergent Overlap-
ping Domain Decomposition Method for Total Variation Minimization, Numer.
Math., Vol 116, No 4, 2010, pp. 645-685

Conference papers

4. Fornasier, M., Langer, A., and Schönlieb, C.-B.: Domain Decomposition Meth-
ods for Compressed Sensing, Proc. Int. Conf. SampTA09, Marseilles, 2009.
arXiv:0902.0124v1 [math.NA]

SOFTWARE

Matlab code: Overlapping domain decomposition methods for total variation min-
imization

ORAL PRESENTATIONS

Contributed conference presentations

1. The Adaptive Iterative Bregman Algorithm, GAMM 2011 (82nd Annual Meet-
ing of the International Association of Applied Mathematics and Mechanics).
Graz (Austria), April 18-21, 2011

2. Domain decomposition methods for total variation minimization, Workshop on
Numerical Methods for Optimal Control and Inverse Problems (OCIP 2011).
Garching by Munich (Germany), March 14-16, 2011

Curriculum Vitae 143

3. Subspace correction algorithms for ℓ1-norm and total variation minimization,
SIMAI Congress 2010. Cagliari (Italy), June 21-25, 2010

4. Domain decomposition methods for total variation minimization, Söllerhaus
Workshop on Domain Decomposition Solvers for Heterogeneous Field Prob-
lems. Hirschegg (Austria), June 2-6, 2010

5. Subspace correction methods for ℓ1-norm and total variation minimization,
SIAM conference on Imaging Science. Chicago (U.S.A.), April 12-14, 2010

6. Domain decomposition methods for compressed sensing, 8th international con-
ference on Sampling Theory and Applications (SAMPTA 2009). Marseille
(France), May 18-22, 2009

Seminars at universities and research institutions

7. Domain decomposition methods for total variation minimization, Invited Sem-
inar, Universität Wien, Wien (Austria), May 05, 2011

8. Domain decomposition methods and Bregman Iterations for Total Variation
Minimization, Invited Seminar, University of Edinburgh, Edinburgh (U.K.),
April 07, 2011

9. Domain decomposition for totalvariation minimization, Invited Seminar, Georg-
August Universität, Göttingen (Germany), March 31, 2011

10. Domain decomposition for total variation minimization, Invited Seminar, Cen-
tre Européen de Recherche et de Formation Avancée en Calcul Scientifique
(CERFACS), Toulouse (France), March 28, 2011

11. Domain decomposition for total variation minimization, Invited Seminar, Karl-
Franzens Universität, Graz (Austria), March 24, 2011

12. Analysis of the Adaptive Iterative Bregman Algorithm, Applied and Com-
putational Analysis Graduate Seminar. University of Cambridge, Cambridge
(U.K.), January 28, 2011

13. Domain decomposition methods for local and nonlocal total variation mini-
mization, Group Seminar START Project and PDE, Johann Radon Insti-
tute for Computational and Applied Mathematics (RICAM), Linz (Austria),
February 02, 2010

14. Wavelet space decomposition for ℓ1-norm and total variation minimization,
Seminar: Applied Mathematics. University of California, Los Angeles (UCLA),
Los Angeles (U.S.A.), October 23, 2009

144 Curriculum Vitae

15. Subspace correction methods for ℓ1-norm and total variation minimization,
Applied Math Colloquium. University of California, Los Angeles (UCLA),
Los Angeles (U.S.A.), October 14, 2009

16. A convergent domain decomposition method for total variation minimiza-
tion, RICAM Informal mini-workshop on sparsity and computations. Johann
Radon Institute of Computational and Applied Mathematics (RICAM), Linz
(Austria), June 03, 2009

PROFESSIONAL ACTIVITIES

Journal Reviewing

Signal Processing

Conference, workshop, meeting organization

2009: Contribution to the organization of the Summer School on “Theoretical Foun-
dations and Numerical Methods for Sparse Recovery” held at the Johann
Radon Institute for Computational and Applied Mathematics (RICAM), Linz
- Austria, on August 31 - September 4, 2009
http://www.ricam.oeaw.ac.at/events/summerschool_2009/

