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Abstract. The minimization of a functional consisting of a combined L1/L2-data-fidelity term and a total
variation term, named L1-L2-TV model, is considered to remove a mixture of Gaussian and impulse noise in images,
which are possibly additionally deformed by some convolution operator. We investigate analytically the stability
of this model with respect to its parameters and link it to a constrained minimization problem. Based on these
investigations and a statistical characterization of the mixed Gaussian-impulse noise a fully automated parameter
selection algorithm for the L1-L2-TV model is presented. It is shown by numerical experiments that the proposed
method finds parameters with which noise is removed considerably while features are preserved in images.

1. Introduction. Total variation as regularization in image restoration was first introduced
in [84] and has received considerable attention in image processing. This is in particular due to its
ability to preserve edges in images [24, 32]. In this context, one typically minimizes a functional
that consists of a data-fidelity term, which enforces the consistency between the recovered and
the measured image, and the total variation as a regularization term. The choice of the data
term typically depends on the type of noise affecting the measured image. Usually images are
corrupted by different types of noise, such as Gaussian noise, Poisson noise, and impulse noise. This
contamination usually happens during image acquisition, which describes the process of capturing
an image by a camera and converting it into a measurable entity [76], and image transmission.
If no data is lost, i.e., the image is not affected by impulse noise, then mixed Poisson-Gaussian
noise can be transformed into additive white Gaussian noise [50]. This might be the reason why
most of the literature is solely dedicated to Gaussian denoising. Further Gaussian-Poisson noise
removal strategies can be found in [11, 33, 54, 64, 65] and references therein. The task of removing
Gaussian noise has been successfully performed by using a quadratic L2-data-fidelity term in first
order methods, see e.g. [23, 25, 26, 31, 37, 41, 42, 43, 46, 57, 77, 81, 89, 94, 14], as well as in
second order methods, see e.g. [62]. In this approach, which we refer to as the L2-TV model, the
original image û is recovered from the observed data g by solving

min
u∈BV (Ω)

α‖Tu− g‖2L2(Ω) + |Du|(Ω), (1.1)

where Ω ⊂ R2 is an open bounded set with Lipschitz boundary, T is a bounded linear operator
modeling the image-formation device (if the image is only corrupted by noise one sets T = I), and
α > 0 is a parameter. We recall, that for u ∈ L1(Ω)

V (u,Ω) := sup

{∫
Ω

udiv φdx : φ ∈ [C1
c (Ω)]2, ‖φ‖L∞(Ω) ≤ 1

}
is the variation of u in Ω. Here, Lq(Ω), with q ∈ [1,∞], denotes the usual Lebesgue space [2] and
Clc(Ω), l ∈ N, is the space of l-times continuously differentiable functions with compact support in
Ω. In the event that V (u,Ω) <∞ we denote |Du|(Ω) = V (u,Ω) and call it the total variation of
u in Ω; see [5, 55] for more details. If u ∈ W 1,1(Ω), then |Du|(Ω) =

∫
Ω
|∇u|dx. Further, BV (Ω)

denotes the space of functions with bounded variation, i.e., u ∈ BV (Ω) if and only if V (u,Ω) <∞.
The space BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω) is a Banach space [55].

Other efficient Gaussian denoising approaches can be found, for example, in [39, 40, 69] and
references therein.

The L2-TV model usually does not yield a satisfactory restoration in the presence of impulse
noise. This type of noise is usually constituted due to malfunctioning pixels in camera sensors,
faulty memory locations in hardware, or transmission over noisy digital links. There are two
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commonly used models of impulse noise considered in the literature. The first one, called salt-
and-pepper noise, where the noisy image g is given by

g(x) =


0 with probability s1 ∈ [0, 1),

1 with probability s2 ∈ [0, 1),

T û(x) with probability 1− s1 − s2,

with 1− s1 − s2 > 0 [29]. Here and in the rest of the paper we assume that T û is in the dynamic
range [0, 1], i.e., 0 ≤ T û ≤ 1. The second model is called random-valued impulse noise, where g is
described as

g(x) =

{
c with probability s ∈ [0, 1),

T û(x) with probability 1− s,

with c being a uniformly distributed random variable in the image intensity range [0, 1]. For
impulse noise contaminated images a more successful approach uses instead of a quadratic L2-
data-fidelity term a non-smooth L1-data-fidelity term [4, 79, 80]. That is, instead of (1.1) one
optimizes the following minimization problem

min
u∈BV (Ω)

α‖Tu− g‖L1(Ω) + |Du|(Ω), (1.2)

which we call the L1-TV model.
Instead of assuming that an image is only contaminated by one type of noise, in this paper we

consider a mixture of Gaussian and impulse noise. Recently in [60] an L1-L2-data-fidelity term has
been introduced and shown to be suited to the task of removing mixed Gaussian-impulse noise.
In this approach, which we call L1-L2-TV model, an image is restored by solving

min
u∈BV (Ω)

α1‖T1u− g1‖L1(Ω) + α2‖T2u− g2‖2L2(Ω) + |Du|(Ω), (1.3)

where Ti : L2(Ω)→ L2(Ω) is a bounded linear operator, gi ∈ L2(Ω) is a given datum, and αi ≥ 0
for i = 1, 2 with α1 + α2 > 0. For the case of removing a mixture of Gaussian and impulse noise
from an image g one typically sets T1 = T2 and g1 = g2 = g in (1.3). In this setting it is easy to
see that the L1-L2-TV model (1.3) is a generalization of (1.1) and (1.2). In particular, if we set
α2 = 0 in (1.3) then we obtain the L1-TV model while for α1 = 0 we obtain the L2-TV model.
Modifications of the L1-L2-TV model have been presented in [58], where the total variation is
replaced by ‖Wu‖1 with W being a wavelet tight frame transform, and in [73], where the second
order total generalized variation [18] has been used as regularization term and box-constraints,
which assure that the reconstruction lies in the respective dynamic range, are incorporated. We
also note, that for impulse noise-dominated contamination of image data the implementation of
an impulse noise detector, such as the one in [28] and the references therein, enhance the model.

Other approaches for removing mixed Gaussian-impulse noise studied in the literature usually
start by estimating or detecting outliers (impulse noise) in the image and then adapt or use a
Gaussian noise removal; see for example [20, 53, 63, 71, 91, 93]. In general, algorithms for Gaussian
plus impulse noise removal may be classified in the following way: filter approaches [52, 82, 93],
regularization based approaches [20, 47, 53, 63, 71, 85, 91, 92], Bayesian-based approaches [74],
and patch-based approaches [45, 70, 72].

The L1-L2-TV model and its aforementioned modifications clearly fall into the class of reg-
ularization based approaches and (the restoration quality of) its solution highly depends on the
proper choice of αi, i = 1, 2. In particular, small α1 and α2, which lead to an over-smoothed
reconstruction, not only remove noise but also eliminate details in the image. On the contrary,
large α1 and α2 lead to solutions that fit the given data properly but retain noise. Note, that α1

and α2 weight the importance of the L1-term and L2-term. In particular, we expect α1 to be large
if the noise in the image is impulse noise dominated, while for Gaussian noise dominated images
α2 should be sufficiently large. Hence a good reconstruction can be achieved by choosing α1 and
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α2 such that a good compromise of the aforementioned effects are made. In [73] it is suggested
to select the parameters according to the variance σ2 of the Gaussian noise and the energy of the
impulse noise, i.e.,

α1 =
EI

EI + σ2
and α2 =

σ2

EI + σ2
, (1.4)

where EI = s1+s2
2 for salt-and-pepper noise and EI = s

3 for random-valued impulse noise. It is
demonstrated in [73] that by setting the parameters according to (1.4) suitable restorations are
obtained. Note, that this parameter selection depends on the noise-levels of the different contained
noises without using the statistical behavior of mixed Gaussian-impulse noise.

For more general problems including (1.3) with T1 = T2 = I in [44] based on a training
set of pairs (gk, ûk), k = 1, 2, . . . , N ∈ N, where gk is the noisy image and ûk represents the
original image, a bilevel optimization approach is presented, which computes suitable parameters
of the corresponding image model. Similar approaches are also discussed in [21, 67] and references
therein. However, since in our setting we do not have a training set given, these approaches are
not applicable here.

In this paper we are investigating the statistical characterization of mixed Gaussian-impulse
noise, where we assume that σ, s1, s2 and s are at hand, and use it to formulate a fully auto-
mated parameter adjustment strategy based on the discrepancy principle to compute suitable
α1 and α2 for (1.3). In order to construct such a method, we link the L1-L2-TV model with a
constrained minimization problem consisting of two constraints, one related to the L1-term and
the other related to the L2-term. In particular, there exist α1 and α2 such that a solution of
the constrained minimization problem is also a minimizer of the L1-L2-TV model; see Theorem
3.5 below. Based on the discrepancy principle we suggest an iterative adjustment scheme, which
utilizes an interplay between the penalized problem (1.3) and the associated constrained problem
in order to either increase or decrease the parameter αi, i = 1, 2, in each iteration. Since this
update rule generates monotonic sequences of parameters, we are able to show that the proposed
method indeed converges. Moreover, in each iteration the L1-L2-TV model has to be solved with
the current parameters. An algorithm for solving such a minimization problem is presented in
[60] without any theoretical justification of its convergence. Here we use the same algorithm and
provide a convergence proof. In our numerical experiments we demonstrate that the proposed
automated parameter selection method indeed finds parameters α1 and α2 such that the cor-
responding restoration is better with respect to some restoration quality measure than the one
obtained with (1.4).

Instead of looking for suitable parameters α1 and α2 one may solve the associated constrained
optimization problem directly. In this vein we utilize the alternating direction method to compute
a numerical minimizer of the constrained problem and compare it with the automated parameter
selection algorithm.

The rest of the paper is organized as follows: In Section 2 a statistical characterization of
mixed Gaussian-impulse noise is given. The link between the L1-L2-TV model and a constrained
minimization problem is investigated in Section 3. In this context, a collection of interesting
properties of the L1-L2-TV model is given. For example we prove a stability result of its minimizers
with respect to the parameters α1 and α2. Based on the constrained minimization problem
together with the statistical characterization of the noise in Section 4 our proposed parameter
selection algorithm is presented. This algorithm requires in each iteration the solution of the L1-
L2-TV model for which a solution algorithm is stated in Section 5 together with its convergence
properties. In Section 6 we show numerical experiments which demonstrate that the proposed
algorithm indeed finds parameters α1 and α2 that provide a good compromise of the effects
described above. Finally in Section 7 conclusions are drawn.

2. Statistical characterization of the noise. Impulse noise (e.g. salt-and-pepper noise
and random-valued impulse noise) is in general non-additive and an observation g might be mod-
eled as g = N (T û), where N represents impulse noise. However, the corruption produced by N
is g − T û =: ρû and hence we may view it in an additive fashion, i.e., g = T û + ρû. In this
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vein at a point x ∈ Ω the Gaussian and impulse noise contaminated image might be written as
g(x) = T û(x)+ηû(x)+ρû(x), which is a stochastic observation, where the random values ηû(x) and
ρû(x) depend on the underlying noise. In particular, the random element ηû represents Gaussian
noise with zero mean and variance σ2, while ρû represents salt-and-pepper noise or random-valued
impulse noise. The processes of contaminating an image by Gaussian noise and impulse noise are
here assumed to be independent from each other, which seems natural, since usually Gaussian
and impulse noise are constituted from different physical processes. For example, due to image
registration Gaussian noise is added and later digital transmission adds impulse noise. Moreover,
for any two points x, y ∈ Ω we assume that ηû(x) and ηû(y) as well as ρû(x) and ρû(y) are inde-
pendent, cf. [61]. By analogous considerations as in [61] we obtain the following characterizations,
whose calculations are deferred to Appendix A.

Gaussian noise. For ηû being normally distributed with zero mean and standard deviation σ
the mean (E), variance (Var), and expected absolute value (EAV) are

E(ηû) = 0, Var(ηû) = σ2, and EAV(ηû) =

√
2

π
σ.

Salt-and-pepper noise. If ρû represents salt-and-pepper noise the mean, the variance, and the
expected absolute value are depending on û and given by

E(ρû | û) = s2(1− T û)− s1T û, Var(ρû | û) = s2(1− T û)2 + s1(T û)2 − (s2 − (s2 + s1)T û)2

and

EAV(ρû | û) = s2 − (s2 − s1)T û.

Assuming that the range of T û belongs to the interval [0, 1], we find

E(ρû | û) ∈ [−s1, s2], Var(ρû | û) ∈
[
s2s

2
1 + s2

2s1

(s1 + s2)2
,max{s1 − s2

1, s2 − s2
2}
]
,

and

EAV(ρû | û) ∈ [min{s1, s2},max{s1, s2}].

Random-valued impulse noise. For random-valued impulse noise the random variable ρû has
the following mean, expected absolute value, and variance:

E(ρû | û) = s

(
1

2
− T û

)
, EAV(ρû | û) = s

(
(T û)2 − T û+

1

2

)
,

and

Var(ρû | û) = s

(
1

3
− T û+ (T û)2

)
− s2

(
1

4
− T û+ (T û)2

)
.

Since T û ∈ [0, 1], we have

E(ρû | û) ∈
[
−s

2
,
s

2

]
, EAV(ρû | û) ∈

[s
4
,
s

2

]
, and Var(ρû | û) ∈

[
s

12
,
s

3
− s2

4

]
.

Mixed noise. Since ηû and ρû are independent random variables, we obtain for a combination
of Gaussian and impulse noise that the variance is given by

ν2 = ν2(û) := Var(ηû + ρû | û) = Var(ηû) + Var(ρû | û) (2.1)

while the expected absolute value can be estimated from below and above by

|E(ηû + ρû | û)| ≤ ν1 = ν1(û) := EAV(ηû + ρû | û) ≤ EAV(ηû) + EAV(ρû | û). (2.2)
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Fig. 2.1. “cameraman” image, see Fig. 6.1(a), corrupted by (left) first Gaussian noise and then
salt-and-pepper noise (right) first salt-and-pepper noise and then Gaussian noise.

Note, that there is a difference whether Gaussian noise is added before or after the impulse noise.
This is due to the definition of impulse noise. For example, salt-and-pepper noise sets with a
certain probability a value of a pixel to the minimal or maximal value of the image intensity
range. This intensity range may be extended due to Gaussian noise. Hence, the observation may
be different depending which noise is added first, see Fig. 2.1.

If an image is first contaminated by impulse noise then, since T û ∈ [0, 1] and hence T û+ ρû ∈
[0, 1], we obtain by the above estimates the following bounds:

Gaussian + salt-and-pepper: ν1 ∈

[
0,

√
2

π
σ + max{s1, s2}

]

ν2 ∈ σ2 +

[
s1s

2
2 + s2

1s2

(s1 + s2)2
,max{s1 − s2

1, s2 − s2
2}
]
.

Gaussian + random-valued: ν1 ∈

[
0,

√
2

π
σ +

s

2

]

ν2 ∈ σ2 +

[
s

12
,
s

3
− s2

4

]
.

(2.3)

If Gaussian noise is added first, then by rescaling the image such that T û + ηû ∈ [0, 1] the
same bounds as in (2.3) are obtained. We remark, that the above calculations of the variance and
expected absolute value can be adjusted to the situation T û ∈ [cmin, cmax], cmin < cmax, which
would make a rescaling of the image unnecessary to obtain bounds similar to (2.3).

3. Constrained versus unconstrained problem. We define the functional in (1.3) as

Jα1,α2
(u) := α1‖T1u− g1‖L1(Ω) + α2‖T2u− g2‖2L2(Ω) + |Du|(Ω)

and link the optimization problem (1.3) to the constrained minimization problem

min
u∈BV (Ω)

|Du|(Ω) subject to (s.t.) ‖T1u− g1‖L1(Ω) ≤ ν1|Ω| and ‖T2u− g2‖2L2(Ω) ≤ ν2|Ω|,

(3.1)
where ν1, ν2 ≥ 0 denote the expected absolute value and the variance of the underlying noise,
respectively. Here, we assume that ν1 and ν2 are fixed constants in the intervals as specified in
(2.3). However, in our numerical experiments we report on results where ν1 and ν2 are chosen
empirically based on some approximation of the true image. If g1 = g2, then we easily see from
the previous section that ν1 and ν2 are correlated by the statistical values σ, s1, s2, and s of the
noise. For example, if ν1 = 0, then also ν2 = 0 and hence no noise is present. Note, that in the
general case where g1 6= g2 is allowed, such a correlation might not be valid.
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It is worth to mention, that an analysis of the relation between convex constrained minimiza-
tion problems with solely one constraint and their associated penalized problem can be found in
[6, 34] and references therein.

3.1. Existence of minimizers. For showing existence of a solution of (3.1) we start by
adapting a result of [1].

Lemma 3.1. Assume there exist i ∈ {1, 2} such that Ti does not annihilate constant functions,
i.e., TiχΩ 6= 0, where χΩ(x) = 1 if x ∈ Ω. Then ‖u‖BV →∞ implies J1,1(u)→∞.

Proof. Since J1,1(u) ≥ |Du|(Ω)+‖Tiu−gi‖iLi(Ω) for i = 1, 2, the assertion immediately follows

from [1, Lemma 4.1] and [61, Proposition 1].
Next, we define the feasible set

U := {u ∈ BV (Ω) : ‖T1u− g1‖L1(Ω) ≤ ν1|Ω| and ‖T2u− g2‖2L2(Ω) ≤ ν2|Ω|}.

Moreover, the convex problem (3.1) is superconsistent if there is a feasible point u of the problem
such that ‖Tiu − gi‖iLi(Ω) < νi|Ω| for i = 1, 2 [83]. Note, that if g1 = g2 and T1 = T2, which is

the most relevant case for removing a mixture of Gaussian-impulse noise, we have that U 6= ∅
and (3.1) is superconsistent, cf. for example [12, 26]. On the contrary, if g1 6= g2, then the
feasible set might be even empty. However, for example an assumption like ν1|Ω| > ‖g1‖L1(Ω) and
ν2|Ω| > ‖g2‖2L2(Ω) would guarantee the non-emptiness of U and the superconsistency of (3.1). For
the sake of generality, in the sequel we will just assume that the set U is not empty or even that
the problem (3.1) is superconsistent.

Now we are able to argue the existence of a minimizer of (3.1).
Theorem 3.2. Assume there exist i ∈ {1, 2} such that Ti does not annihilate constant

functions and U 6= ∅. Then the problem in (3.1) has a solution u ∈ BV (Ω).
Proof. Choose an infimal sequence (un)n ⊂ U of (3.1). Lemma 3.1 yields that (un)n is

bounded in BV (Ω). Then there exists a subsequence (unk)k ⊂ U which converges weakly in
L2(Ω) to some u∗ ∈ L2(Ω). The lower semi-continuity of the total variation |D · |(Ω) with respect
to the L2(Ω) topology [1, Theorem 2.3] implies u∗ ∈ BV (Ω). The sequence (Dunk)k converges
weakly as a measure to Du∗ [1, Lemma 2.5]. Since T1 and T2 are continuous linear operators,
(Tiunk)k converges weakly to Tiu

∗ in L2(Ω). By the lower semi-continuity we have

‖T1u
∗ − g1‖L1(Ω) ≤ lim inf

k→∞
‖T1unk − g1‖L1(Ω) ≤ ν1|Ω|

‖T2u
∗ − g2‖2L2(Ω) ≤ lim inf

k→∞
‖T2unk − g2‖2L2(Ω) ≤ ν2|Ω|

and hence u∗ ∈ BV (Ω) is a solution of (3.1).
The assumption that at least either T1 or T2 does not annihilating constant functions also

ensures that Jα1,α2
has a minimizer if α1, α2 > 0. In particular, we have the following result.

Theorem 3.3. Assume there exist i ∈ {1, 2} such that Ti does not annihilate constant
functions and αi > 0. Then the problem in (1.3) has a solution u ∈ BV (Ω). If α2 > 0 and T2 is
injective, then the minimizer u is unique.

Proof. Existence: The existence of a solution of (1.3) follows from the same arguments as the
ones from the proof of Theorem 3.2 by noting that the lower semi-continuity yields

Jα1,α2
(u∗) ≤ lim inf

k→∞
Jα1,α2

(unk),

where unk is a subsequence of a minimizing sequence for Jα1,α2
and u∗ is its limit. Consequently

u∗ ∈ BV (Ω) is a minimizer of Jα1,α2 .
Uniqueness: If α2 > 0, then similar as in the proof of [87, Proposition 3.1], let u, v ∈ BV (Ω)

be two minimizers of Jα1,α2
and T2u 6= T2v. Then by the strict convexity of the L2-term we get

Jα1,α2

(
u+v

2

)
< 1

2Jα1,α2(u) + 1
2Jα1,α2(v) = min

w∈BV (Ω)
Jα1,α2(w).

Since u and v are minimizers, this inequality cannot be true, and hence T2u = T2v. If T2 is
injective, then we have u = v.
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Note, that if α2 > 0 and T2 is injective, then α2‖T2u − g2‖2L2(Ω) and hence Jα1,α2
is strictly

convex, which renders its minimizer unique. The uniqueness of minimizers can be also obtained
by the following stability result, cf. [9, Theorem 10.6] for the L2-TV model with T2 = I.

Proposition 3.4. For g1, g2, f1, f2 ∈ L2(Ω) let the functions ug, uf ∈ BV (Ω) be minimizers
of

min
u∈BV (Ω)

α1‖T1u− g1‖L1(Ω) + α2‖T2u− g2‖2L2(Ω) + |Du|(Ω)

and

min
u∈BV (Ω)

α1‖T1u− f1‖L1(Ω) + α2‖T2u− f2‖2L2(Ω) + |Du|(Ω),

respectively. Then for α2 > 0 and α1 ≥ 0 we have that

‖T2(uf − ug)‖L2(Ω) ≤ 1
2‖f2 − g2‖L2(Ω) + 1

2α2

√
α2

2‖f2 − g2‖2L2(Ω) + 4α1α2‖f1 − g1‖L1(Ω).

Proof. Define the convex functionals Gg(u) := α2‖T2u−g2‖2L2(Ω), Gf (u) := α2‖T2u−f2‖2L2(Ω),

Fg(u) := α1‖T1u − g1‖L1(Ω) + |Du|(Ω), Ff (u) := α1‖T1u − f1‖L1(Ω) + |Du|(Ω) and set Jg(u) :=
Gg(u) + Fg(u) and Jf (u) := Gf (u) + Ff (u). We extend Fg and Ff to L2(Ω) with the value +∞.
Moreover, we note that Gg and Gf are Fréchet differentiable.

For x ∈ ∂Fg(u) and y ∈ ∂Ff (v) we have by the definition of subdifferential, see for example
[49], that

Fg(w) ≥ Fg(u) + 〈x,w − u〉 for all w ∈ L2(Ω),

Ff (w̃) ≥ Ff (v) + 〈y, w̃ − v〉 for all w̃ ∈ L2(Ω).

Summing up these inequalities for w = v and w̃ = u yields

〈x− y, v − u〉 ≤ α1

(
‖T1v − g1‖L1(Ω) − ‖T1v − f1‖L1(Ω) + ‖T1u− f1‖L1(Ω) − ‖T1u− g1‖L1(Ω)

)
≤ α1

(
‖f1 − g1‖L1(Ω) + ‖f1 − g1‖L1(Ω)

)
.

From this together with the optimality of ug and uf , i.e., −∂Gg(ug) ∈ ∂Fg(ug) and −∂Gf (uf ) ∈
∂Ff (uf ), we obtain

2α2〈T2(uf − ug) + g2 − f2, T2(uf − ug)〉 ≤ 2α1‖f1 − g1‖L1(Ω)

which is equivalent to

2α2‖T2(uf − ug)‖2L2(Ω) + 2α2〈g2 − f2, T2(uf − ug)〉 ≤ 2α1‖f1 − g1‖L1(Ω).

Using Hölder’s inequality implies then

α2‖T2(uf − ug)‖2L2(Ω) − α2‖g2 − f2‖L2(Ω)‖T2(uf − ug)‖L2(Ω) − α1‖f1 − g1‖L1(Ω) ≤ 0.

This is a quadratic inequality in ‖T2(uf − ug)‖L2(Ω) and hence calculating the roots yields

‖T2(uf − ug)‖L2(Ω) ≤ 1
2α2

(
α2‖f2 − g2‖L2(Ω) +

√
α2

2‖f2 − g2‖2L2(Ω) + 4α1α2‖f1 − g1‖L1(Ω)

)
,

where we noted that
√
α2

2‖f2 − g2‖2L2(Ω) + 4α1α2‖f1 − g1‖L1(Ω) ≥ α2‖f2 − g2‖L2(Ω).

Motivated by results in [12] we link the constrained minimization problem (3.1) to the uncon-
strained minimization problem (1.3).

Theorem 3.5. Assume that Ti does not annihilate constant functions for i = 1, 2 and (3.1)
is superconsistent. Then there exists an α = (α1, α2) ≥ 0 such that a solution of (1.3) satisfies
the constraints in (3.1). Moreover, if αi > 0 then ‖Tiu − gi‖iLi(Ω) = νi|Ω| for this value of i. In

particular, there exist i ∈ {1, 2} such that αi > 0, if at least one of the following conditions holds:
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(C1) infc∈R ‖g1 − c‖L1(Ω) > ν1|Ω| and T1 · 1 = 1
(C2) infc∈R ‖g2 − c‖2L2(Ω) > ν2|Ω| and T2 · 1 = 1

Proof. We define the Lagrange function

L(u, α) := |Du|(Ω) + α1(‖T1u− g1‖L1(Ω) − ν1|Ω|) + α2(‖T2u− g2‖2L2(Ω) − ν2|Ω|).

Let u∗ ∈ BV (Ω) be a solution of (3.1), then, since the convex problem (3.1) is superconsistent,
the Karush-Kuhn-Tucker Theorem [83, p. 182] yields that there exists an α∗ = (α∗1, α

∗
2) ≥ 0 such

that

L(u∗, α) ≤ L(u∗, α∗) ≤ L(u, α∗) (3.2)

for all u ∈ BV (Ω) and all α = (α1, α2) ≥ 0, and

α∗i (‖Tiu∗ − gi‖iLi(Ω) − νi|Ω|) = 0

for i = 1, 2. That is, ‖Tiu − gi‖iLi(Ω) = νi|Ω| if α∗i > 0. By the second inequality in (3.2) we see

that u∗ is also a minimizer of (1.3).
Let us finally show that not both αi = 0, if condition (C1) and/or (C2) holds. If α1 = α2 = 0,

then for the associated solution ũ of (3.1) we would have that |Dũ|(Ω) ≤ |Du|(Ω) for all u ∈ BV (Ω)
and hence ũ = c ∈ R is constant. Assume condition (C1) holds, then T1 · 1 = 1 and we obtain

‖g1 − c‖L1(Ω) = ‖g1 − T1ũ‖L1(Ω) ≤ ν1|Ω|

which is a contradiction to (C1). By the same arguments one shows the statement for (C2).

3.2. Stability of the L1-L2-TV model with respect to its parameters. We define the
minimum values of the energy Jα1,α2

by

E(α1, α2) := min
u∈BV (Ω)

Jα1,α2(u).

Following [30] we obtain the following result.
Proposition 3.6. For any given gi ∈ L2(Ω) for i = 1, 2 the function E has the following

properties:
1. E(0, 0) = 0.
2. 0 ≤ E(α1, α2) ≤ α1‖g1‖L1(Ω) + α2‖g2‖2L2(Ω) for all α1, α2 ≥ 0.

Proof. Since E(0, 0) = minu∈BV (Ω) J0,0(u) = minu∈BV (Ω) |Du|(Ω) = 0, the first statement
follows. Further, we have 0 ≤ E(α1, α2) ≤ Jα1,α2(0), which shows the second statement.

Similar as for the L1-TV model and the L2-TV model, see [30, 26], we have a monotonicity
property of the data-fidelity terms with respect to the parameters α1 and α2.

Proposition 3.7. Let βi > αi ≥ 0 and αǐ ≥ 0 for i = 1, 2 and ǐ ∈ {1, 2} \ {i}. Assume
uα1,α2

, uβ1,α2
, uα1,α2

, and uα1,β2
are any four minimizers of Jα1,α2

, Jβ1,α2
, Jα1,α2

, and Jα1,β2
,

respectively. Then

‖T1uα1,α2
− g1‖L1(Ω) ≥ ‖T1uβ1,α2

− g1‖L1(Ω) and

‖T2uα1,α2
− g2‖L2(Ω) ≥ ‖T2uα1,β2

− g2‖L2(Ω)

Proof. We start by showing the first inequality. Suppose it is not true, i.e., ‖T1uα1,α2
−

g1‖L1(Ω) < ‖T1uβ1,α2
− g1‖L1(Ω). From the optimality of uα1,α2

we have that Jα1,α2
(uα1,α2

) ≤
Jα1,α2

(uβ1,α2
). Then we have

Jβ1,α2
(uα1,α2

) = Jα1,α2
(uα1,α2

) + (β1 − α1)‖T1uα1,α2
− g1‖L1(Ω)

≤ Jα1,α2
(uβ1,α2

) + (β1 − α1)‖T1uα1,α2
− g1‖L1(Ω)

< Jα1,α2
(uβ1,α2

) + (β1 − α1)‖T1uβ1,α2
− g1‖L1(Ω) = Jβ1,α2

(uβ1,α2
),

which is a contradiction, since uβ1,α2
is a minimizer of Jβ1,α2

. This proves the first inequality.
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By similar arguments one can show again by contradiction that the second inequality holds.

In order to show a stability result of the L1-L2-TV model with respect to its parameters we
adapt [9, Lemma 10.2] to our more general setting.

Lemma 3.8. Let u ∈ BV (Ω) be a minimizer of Jα1,α2 . Then for every v ∈ BV (Ω) we have

α2‖T2(u− v)‖2L2(Ω) ≤ Jα1,α2
(v)− Jα1,α2

(u).

Proof. By setting F (u) = α1‖T1u − g1‖L1(Ω) + |Du|(Ω) and G(u) = α2‖T2u − g1‖2L2(Ω) the

proof is analogue to the one of [9, Lemma 10.2].
Theorem 3.9. Define ai(α1, α2) := 1

αi
(α1‖g1‖L1(Ω) + α2‖g2‖2L2(Ω)) for i = 1, 2 and let

α1, α1, α2, α2 > 0. If uα1,α2 and uα1,α2 are minimizers of Jα1,α2 and Jα1,α2 respectively, then we
have

‖T2(uα1,α2
− uα1,α2

)‖2L(Ω) ≤
|α1 − α1|
α2 + α2

max {a1(α1, α2), a1(α1, α2)}+
|α2 − α2|
α2 + α2

C =: B, (3.3)

where C = min{C1, C2} with C1 = max {a2(α1, α2), a2(α1, α2)},

C2 =
A2

2|α2 − α2|+A2

(
(α2 − α2)2A2

2 + 4(α2 + α2)|α1 − α1|max {a1(α1, α2), a1(α1, α2)}
)1/2

2(α2 + α2)
,

and A2 := a2(α1, α2)1/2 + a2(α1, α2)1/2.
If additionally T1 = T2 =: T then

‖T (uα1,α2 − uα1,α2)‖L2(Ω) ≤ min{
√
B, B̃} (3.4)

where B̃ := |α1−α1|
α2+α2

|Ω|1/2 + |α2−α2|
α2+α2

A2.
Proof. By Lemma 3.8 we have

α2‖T2(uα1,α2
− uα1,α2

)‖2L2(Ω) ≤ Jα1,α2
(uα1,α2

)− Jα1,α2
(uα1,α2

)

α2‖T2(uα1,α2
− uα1,α2

)‖2L2(Ω) ≤ Jα1,α2
(uα1,α2

)− Jα1,α2
(uα1,α2

).

Summing up these inequalities yields

(α2 + α2)‖T2(uα1,α2
− uα1,α2

)‖2L2(Ω) ≤ (α1 − α1)(‖T1uα1,α2
− g1‖L1(Ω) − ‖T1uα1,α2

− g1‖L1(Ω))

+(α2 − α2)(‖T2uα1,α2
− g2‖2L2(Ω) − ‖T2uα1,α2

− g2‖2L2(Ω)).

(3.5)

By the monotonicity property, see Proposition 3.7, we obtain that both terms on the right-hand
side of the latter inequality are non-negative. Moreover, note that

‖Tiuα1,α2 − gi‖iLi(Ω) ≤ ai(α1, α2) (3.6)

for i = 1, 2 and any α1, α2 > 0, see Proposition 3.6. These observations lead to

‖T2(uα1,α2 − uα1,α2)‖2L2(Ω) ≤
|α1 − α1|
α2 + α2

max{a1(α1, α2), a1(α1, α2)}

+
|α2 − α2|
α2 + α2

max{a2(α1, α2), a2(α1, α2)}.
(3.7)

On the contrary, inequality (3.5) implies

(α2 + α2)‖T2(uα1,α2
−uα1,α2

)‖2L2(Ω) ≤ |α1 − α1|max{a1(α1, α2), a1(α1, α2)}

+ |α2 − α2|‖T2(uα1,α2 − uα1,α2)‖L2(Ω)(a2(α1, α2)1/2 + a2(α1, α2)1/2)
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where we used the binomial formula a2 − b2 = (a+ b)(a− b) for a, b ∈ R, the triangle inequality,
and (3.6). This is a quadratic inequality in ‖T2(uα1,α2

− uα1,α2
)‖L2(Ω) yielding

‖T2(uα1,α2
− uα1,α2

)‖L2(Ω)

≤ |α2 − α2|
2(α2 + α2)

A2 +

√
(α2 − α2)2A2

2 + 4(α2 + α2)|α1 − α1|max{a1(α1, α2), a1(α1, α2)}
2(α2 + α2)

.

(3.8)

Squaring (3.8) and combining it with (3.7) yields the assertion.
If T1 = T2 = T , then from (3.5) by using the triangle inequality and the above used binomial

formula we get

(α2 + α2)‖T (uα1,α2
− uα1,α2

)‖2L2(Ω) ≤ |α1 − α1|‖T (uα1,α2
− uα1,α2

)‖L1(Ω)

+ (α2 − α2)‖T (uα1,α2
− uα1,α2

)‖L2(Ω)(‖Tuα1,α2
− g2‖L2(Ω) + ‖Tuα1,α2

− g2‖L2(Ω)).

By using Hölder inequality on the L1-term and by using (3.6) we obtain

‖T (uα1,α2
− uα1,α2)‖L2(Ω) ≤

|α1 − α1|
α2 + α2

|Ω|1/2 +
|α2 − α2|
α2 + α2

A2.

Combining the latter inequality with (3.3) we get (3.4), which finishes the proof.
Remark 3.10. If T2 = I, then the inequalities (3.3) and (3.4) provide us with an upper

bound on the distance between two solutions obtained with different parameters. In particular, if
the parameters in the L1-L2-TV model are slightly perturbed, only small changes are expected in
the minimizer.

3.3. Further properties of the L1-L2-TV model. In this section we essentially follow
[30] to further investigate and prove properties of the L1-L2-TV model.

Proposition 3.11. Given gi ∈ L2(Ω), i = 1, 2. For each α1, α2 > 0 we denote by uα1,α2

the unique minimizer of Jα1,α2
with T1 = T2 = I. Then the function (α1, α2) → α1‖uα1,α2

−
g1‖L1(Ω) + α2‖uα1,α2

− g2‖2L2(Ω) is continuous.
Proof. Fix α∗1, α

∗
2 > 0 and let uα∗1 ,α∗2 be the unique minimizer of Jα∗1 ,α∗2 . Let the sequence

(αj1, α
j
2)j converge to (α∗1, α

∗
2). We consider the sequence (uαj1,α

j
2
)j of corresponding minimizers.

From the relation Jαj1,αj2(uαj1,α
j
2
) ≤ Jαj1,αj2(0) = α1‖g1‖L1(Ω) + α2‖g2‖2L2(Ω) follows that the se-

quence (uαj1,α
j
2
)j has uniformly bounded total variation, L1-norm, and L2-norm. Moreover, it

implies that

α1‖uα1,α2
− g1‖L1(Ω) + α2‖uα1,α2

− g2‖2L2(Ω) ≤ α1‖g1‖L1(Ω) + α2‖g2‖2L2(Ω). (3.9)

The standard compactness property for functions with uniformly bounded total variation on com-
pact sets implies that there exists a sequence, which we denote again by (uαj1,α

j
2
)j , such that

uαj1,α
j
2
→ v ∈ L1

loc(Ω) in L1 on any bounded set. We may then pass to another subsequence to

make sure that uαj1,α
j
2
(x)→ v(x) pointwise almost everywhere as well. Fatou’s lemma shows that

‖v − g2‖L2(Ω) ≤ lim inf
j→∞

‖uαj1,αj2 − g2‖L2(Ω)

‖v − g1‖L1(Ω) ≤ lim inf
j→∞

‖uαj1,αj2 − g1‖L1(Ω)

(3.10)

and hence v ∈ L2(Ω). By the lower semicontinuity of the total variation, i.e., |Dv|(Ω) ≤
lim infj→∞ |Duαj1,αj2 |(Ω), we get Jα∗1 ,α∗2 (v) ≤ lim infj→∞ Jαj1,αj2(uαj1,α

j
2
).

Let us show that Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) ≥ lim supj→∞ Jαj1,αj2(uαj1,α
j
2
). Assume it is not true. Then

there exists an ε > 0 and j arbitrary large such that Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) ≤ Jαj1,αj2(uαj1,α
j
2
)− ε. We also

have limj→∞ Jαj1,αj2(uα∗1 ,α∗2 ) = Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) and hence Jαj1,αj2(uα∗1 ,α∗2 ) < Jαj1,αj2(uαj1,α
j
2
) for some
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large j, which is a contradiction, since uαj1,α
j
2

is a minimizer of Jαj1,αj2 . Hence we can conclude

that

lim sup
j→∞

Jαj1,αj2(uαj1,α
j
2
) ≤ Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) ≤ Jα∗1 ,α∗2 (v) ≤ lim inf

j→∞
Jαj1,αj2(uαj1,α

j
2
).

We thus see that v is a minimizer of Jα∗1 ,α∗2 and by uniqueness we get that v = uα∗1 ,α∗2 .
We are left by showing that

lim sup
j→∞

αj1‖uαj1,αj2−g1‖L1(Ω) +αj2‖uαj1,αj2−g2‖2L2(Ω) ≤ α
∗
1‖uα∗1 ,α∗2 −g1‖L1(Ω) +α∗2‖uα∗1 ,α∗2 −g2‖2L2(Ω).

Assume it is wrong. Then there exists an ε > 0 and arbitrary j such that

αj1‖uαj1,αj2 − g1‖L1(Ω) + αj2‖uαj1,αj2 − g2‖2L2(Ω) − ε ≥ α
∗
1‖uα∗1 ,α∗2 − g1‖L1(Ω) + α∗2‖uα∗1 ,α∗2 − g2‖2L2(Ω).

Then Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) ≤ lim infj→∞ Jαj1,αj2(uαj1,α
j
2
) − ε and Jαj1,αj2(uα∗1 ,α∗2 ) → Jα∗1 ,α∗2 (uα∗1 ,α∗2 ) as

j → ∞. These last two statements lead as before to the contradiction that Jαj1,αj2(uα∗1 ,α∗2 ) ≤
Jαj1,αj2(uαj1,α

j
2
). Hence we established continuity of the map for α1, α2 > 0.

Now, let us deal with the behavior of the L1-L2-TV model if the parameters α1 and α2 are
small.

Proposition 3.12. Let T1 = T2 = I and α1, α2 ≥ 0. There exists a threshold λ∗ = λ∗(Ω)

such that if α1|Ω|
1
2 + 2α2‖g2‖L2(Ω) < λ∗, then the minimizer uα1,α2

of Jα1,α2
is constant.

Proof. Let uΩ := 1
|Ω|
∫

Ω
udx, then there exists a constant C > 0 depending only on Ω such

that

|Du|(Ω) ≥ C‖u− uΩ‖L2(Ω) for all u ∈ BV (Ω);

see [5, Remark 3.50] or [55, p. 24]. From the optimality of u := uα1,α2 we have Jα1,α2(u) ≤
Jα1,α2(uΩ) and by the above inequality this yields

C‖u − uΩ‖L2(Ω) + α1‖u − g1‖L1(Ω) + α2‖u − g2‖2L2(Ω) ≤ α1‖uΩ − g1‖L1(Ω) + α2‖uΩ − g2‖2L2(Ω)

which is equivalent to

C‖u − uΩ‖L2(Ω) ≤ α1‖uΩ − g1‖L1(Ω) − α1‖u − g1‖L1(Ω) + α2‖uΩ − g2‖2L2(Ω) − α2‖u − g2‖2L2(Ω).

By using the triangle inequality we get

C‖u − uΩ‖L2(Ω) ≤ α1‖uΩ − u‖L1(Ω) + α2

(
‖uΩ‖2L2(Ω) − 2〈uΩ − u, g2〉 − ‖u‖2L2(Ω)

)
.

Note, that by the Cauchy-Schwarz inequality ‖uΩ‖2L2(Ω) ≤ ‖u‖
2
L2(Ω) and hence we obtain

C‖u − uΩ‖L2(Ω) ≤ α1‖uΩ − u‖L1(Ω) + 2α2‖uΩ − u‖L2(Ω)‖g2‖L2(Ω).

By using Hölder’s inequality on the L1-term we get

C‖u − uΩ‖L2(Ω) ≤
(
α1|Ω|

1
2 + 2α2‖g2‖L2(Ω)

)
‖u − uΩ‖L2(Ω).

If C > α1|Ω|
1
2 + 2α2‖g2‖L2(Ω), then ‖u − uΩ‖L2(Ω) = 0 and hence u = uΩ, which shows the

assertion with λ∗ := C.

A similar result is obtained for images g1, g2 defined on Rd, d ∈ N, where the variational
problem is written as

min
u∈BV (Rd)

{Jα1,α2
(u) := α1‖u− g1‖L1(Rd) + α2‖u− g2‖2L2(Rd) + |Du|(Rd)}. (3.11)
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Proposition 3.13. Let Λ ⊂ Rd be a bounded domain, gi ∈ Li(Rd) given such that supp(gi) ⊂
Λ for i = 1, 2, and α1, α2 ≥ 0. Then there exists a threshold λ∗ = λ∗(Λ, d) such that if α1|Λ|

1
2 +

2α2‖g2‖L2(Λ) < λ∗, then a minimizer of Jα1,α2
is given by uα1,α2

≡ 0.
Proof. By the Sobolev inequality, see e.g. [5, 55, 75], we have that there exists a constant

C(d) > 0 such that∫
Rd
|Du| ≥ C(d)‖u‖

L
d
d−1 (Rd)

= C(d)

(
‖u‖

d
d−1

L
d
d−1 (Rd\Λ)

+ ‖u‖
d
d−1

L
d
d−1 (Λ)

) d−1
d

for all u ∈ BV (Rd) with compact support. Then from the minimality of uα1,α2
we have Jα1,α2

(uα1,α2
) ≤

Jα1,α2
(0) and hence by the isoperimetric inequality this means

C(d)‖uα1,α2
‖
L

d
d−1 (Rd)

+ α1‖uα1,α2
− g1‖L1(Rd) + α2‖uα1,α2

− g2‖2L2(Rd)

≤ α1‖g1‖L1(Rd) + α2‖g2‖2L2(Rd).
(3.12)

Since ‖ · ‖iLi(Rd) = ‖ · ‖iLi(Rd\Λ) + ‖ · ‖iLi(Λ) and supp(gi) ⊂ Λ for i = 1, 2 we also have

C(d)‖uα1,α2
‖
L

d
d−1 (Λ)

+α1‖uα1,α2
− g1‖L1(Λ) +α2‖uα1,α2

− g2‖2L2(Λ) ≤ α1‖g1‖L1(Λ) +α2‖g2‖2L2(Λ),

which is equivalent to

C(d)‖uα1,α2
‖
L

d
d−1 (Λ)

+ α1‖uα1,α2 − g1‖L1(Λ) + α2‖uα1,α2‖2L2(Λ) + α2‖g2‖2L2(Λ)

≤ α1‖g1‖L1(Λ) + α2‖g2‖2L2(Λ) + 2α2〈uα1,α2
, g2〉.

Now, we use the triangle inequality in the second term which yields

C(d)‖uα1,α2
‖
L

d
d−1 (Λ)

≤ α1‖uα1,α2
‖L1(Λ) + 2α2〈uα1,α2

, g2〉.

In the latter inequality we multiply the left side by 1 = 1

|Λ|
2−d
2d

‖1‖
L

2d
2−d (Λ)

and use the generalized

Hölder inequality, i.e., ‖uv‖Lr(Λ) ≤ ‖u‖Lp(Λ)‖v‖Lq(Λ) for 1
p + 1

q = 1
r ≤ 1 and u ∈ Lp(Λ), v ∈ Lp(Λ),

to get

C(d)

|Λ| 2−d2d

‖uα1,α2‖L2(Λ) ≤ α1‖uα1,α2‖L1(Λ) + 2α2‖uα1,α2‖L2(Λ)‖g2‖L2(Λ),

where we used the Cauchy-Schwarz inequality on the right side. By using once more Hölder’s
inequality on the L1-term we obtain

C(d)

|Λ| 2−d2d

‖uα1,α2
‖L2(Λ) ≤

(
α1|Λ|

1
2 + 2α2‖g2‖L2(Λ)

)
‖uα1,α2

‖L2(Λ).

If C(d)

|Λ|
2−d
2d

> α1|Λ|
1
2 + 2α2‖g2‖L2(Λ) then ‖uα1,α2‖L2(Λ) = 0 and hence uα1,α2 = 0 in Λ.

We are left with showing that uα1,α2
= 0 in Rd \Λ if ‖g2‖L2(Λ) <

1
2α2

(
C(d)

|Λ|
2−d
2d

− α1|Λ|
1
2

)
. By

the inequality (3.12) we also have

C(d)‖uα1,α2
‖
L

d
d−1 (Rd)

+α1‖uα1,α2
− g1‖L1(Λ) +α2‖uα1,α2

− g2‖2L2(Λ) ≤ α1‖g1‖L1(Λ) +α2‖g2‖2L2(Λ).

Now we apply the triangle inequality and split the first term into integrations over Rd \Λ and Λ,
which gives

C(d)

(
‖uα1,α2‖

d
d−1

L
d
d−1 (Rd\Λ)

+ ‖uα1,α2‖
d
d−1

L
d
d−1 (Λ)

) d−1
d

+ α1(‖g1‖L1(Λ) − ‖uα1,α2‖L1(Λ))

+α2(‖g2‖L2(Λ) − ‖uα1,α2
‖L2(Λ))

2 ≤ α1‖g1‖L1(Λ) + α2‖g2‖2L2(Λ).

(3.13)
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For α1|Λ|
1
2 + 2α2‖g2‖L2(Λ) <

C(d)

|Λ|
2−d
2d

=: λ∗ we have that ‖uα1,α2‖Lp(Λ) = 0 for p ∈ [1,∞] and

hence we obtain by (3.13) that ‖uα1,α2
‖
L

d
d−1 (Rd\Λ)

= 0, which concludes the proof.

The assumptions α1|Ω|
1
2 +2α2‖g2‖L2(Ω) < λ∗ and α1|Λ|

1
2 +2α2‖g2‖L2(Λ) < λ∗ of the previous

propositions clearly hold, if the parameters α1 and α2 are sufficiently small. These results somehow
merge the behavior of the L1-TV and L2-TV model for small parameters, cf. [30, 75].

The last two statements dealt with the behavior of the L1-L2-TV model if α1 and α2 are
small. Motivated by results for the L1-TV model we state now properties of the L1-L2-TV model
if α1 is large. In particular, as for the L1-TV model, see [30, Lemma 5.5], we have the following
statement:

Lemma 3.14. Given g1 = g2 =: g ∈ BV (Rd), d ∈ N. Assume there exists a vector field φ
with the following properties:

1. φ(x) ∈ C1
c (Rd,Rd),

2. |φ(x)| ≤ 1 for all x ∈ Rd,
3.
∫
Rd g(x) div φ(x)dx = |Dg|(Rd).

Then there exists a threshold α∗1 ≥ 0 independent of α2 such that the unique minimizer of Jα1,α2

is given by uα1,α2
= g for all α1 ≥ α∗1 and α2 ≥ 0.

Proof. For any u ∈ BV (Rd) we have

Jα1,α2
(u) = |Du|(Rd) + α1

∫
Rd
|u− g|dx+ α2

∫
Rd
|u− g|2dx

≥
∫
Rd
udiv φdx+ α1

∫
Rd
|u− g1|dx+ α2

∫
Rd
|u− g|2dx

=

∫
Rd
g div φdx+

∫
Rd

(u− g) div φdx+ α1

∫
Rd
|u− g|dx+ α2

∫
Rd
|u− g|2dx

= |Dg|(Rd) +

∫
Rd

(u− g) div φdx+ α1

∫
Rd
|u− g|dx+ α2

∫
Rd
|u− g|2dx

≥ Jα1,α2
(g) + (α1 − max

x∈Rd
|div φ|)

∫
Rd
|u− g|dx+ α2

∫
Rd
|u− g|2dx.

For α1 ≥ α∗1 := maxx∈Rd |div φ|, the last inequality shows Jα1,α2(u) ≥ Jα1,α2(g). Assume u is a
minimizer, which is unique, it follows that u ≡ g.

When we apply Lemma 3.14 to binary images, we obtain the following theorem, cf. [30,
Theorem 5.6].

Theorem 3.15. Let Λ ⊂ Rd be a bounded domain with C2 boundary. Let g(x) = g1(x) =
g2(x) = 1Λ(x) for all x ∈ Rd and α2 ≥ 0. Then there exists a threshold α∗1 ≥ 0 such that whenever
α1 > α∗1, the unique minimizer of Jα1,α2 is g = 1Λ itself.

4. Automated parameter selection. In order to motivate the L1-L2-TV model in [60]
for the version (3.11) a simple and illustrative example is presented, in which its minimizer is
compared with the one of the L1-TV model, i.e., when α2 = 0 in (3.11), and with the one of the
L2-TV model, i.e., when α1 = 0 in (3.11). Note, that for α2 > 0 the functional in (3.11) is strictly
convex and hence has a unique minimizer. Moreover, if α1 = α2 = 0, then any constant function
is a minimizer of problem (3.11).

The amazing fact we observe from [60, Example 2.1] is that the L1-L2-TV model possesses the
advantages of both other models, i.e., the L1-TV model and L2-TV model. That is, the L1-L2-TV
model is able to recover the original image, has a unique solution T2uα1,α2

, since it is strictly
convex with respect to T2u, and preserves even smaller details than the L2-TV model.

We recall that for g1 = g2 = 1Br(0) being the characteristic function of a disk Br(0) centered
at the origin with radius r > 0 and T1 = T2 = I, the unique minimizer of (3.11) is given by

uα1,α2 =


0 if 0 ≤ r < 2

2α2+α1
,(

2α2+α1

2α2
− 1

α2r

)
1Br(0) if 2

2α2+α1
≤ r ≤ 2

α1
,

1Br(0) if r > 2
α1
.

(4.1)
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From this we clearly see that for the L1-L2-TV model there exist numerous different parameters
α1 and α2 generating the same solution, even if 2

2α2+α1
≤ r ≤ 2

α1
.

Our parameter selection approach is motivated by Theorem 3.5, from which we know that if
αi > 0, then indeed ‖Tiu − gi‖iLi(Ω) = νi|Ω| for this value of i ∈ {1, 2}. In order to formulate an

algorithm based on (3.1) we assume that the feasible set U is non-empty.

4.1. Uzawa’s method. Assuming that ν1 and ν2 are at our disposal, we suggest to choose
the parameters α1 and α2 depending on the constraints in (3.1). Hence the constrained min-
imization problem (3.1) might be solved by Uzawa’s method [35]; see Algorithm 1 below with
νi(u

(n)) ≡ νi constant. In general, as described in Section 2, ν1 and ν2 depend on the original
(unknown) image. Nevertheless, instead of considering νi(u) in (3.1), which would result in a
quite nonlinear problem, we choose a reference image and compute approximate values ν1 and ν2,
leading to the following iterative scheme:

Algorithm 1 (Uzawa’s method). Initialize ρ > 0 (small enough), α
(0)
i > 0 for i = 1, 2 and

set n = 0;
1) Compute u(n) ∈ arg minu∈BV (Ω) Jα(n)

1 ,α
(n)
2

(u)

2) Update α
(n+1)
i = max{α(n)

i + ρ(Hi(u
(n))− νi(u(n))|Ω|), 0} for i = 1, 2;

3) Stop or set n = n+ 1 and continue with step 1).

Here and below, Hi(u) := ‖Tiu− gi‖iLi(Ω) and νi(u
(n)) is computed according to the formulas

presented in Section 2 for i = 1, 2, i.e, (2.1) and (2.2). Observe, that if Hi(u
(n)) < νi(u

(n))|Ω|,
then αi is decreased, which relaxes the corresponding constraint, while for Hi(u

(n)) > νi(u
(n))|Ω|

the value αi is increased and hence the associated constraint enforced. In step 2) it is ensured that
the parameters αi are always non-negative, whereby they are allowed to reach 0. The algorithm
is stopped as soon as one of the following two conditions hold for the first time:

(S1) the distance between Hi(u
(n)) and νi(u

(n))|Ω| is sufficiently small, i.e., |Hi(u
(n))−νi(u(n))|Ω||
νi(u(n))|Ω| <

ε1 = 10−4, or

(S2) the norm of the difference of two successive iterates α
(n)
i and α

(n+1)
i drops below a certain

threshold, i.e., ‖α(n)
i − α(n+1)

i ‖ < ε2 = 10−4.

In order to obtain convergence at all, the parameter ρ > 0 has to be chosen sufficiently small. If
convergent, then clearly the magnitude of ρ has a significant influence on the convergence speed.
In particular, a small ρ leads to a very slow convergence. Hence we would wish to choose ρ as
large as possible but small enough such that the algorithm still converges. In all our numerical
experiments we observed convergence of Algorithm 1 if we chose ρ at most 1. However, for this
choice of ρ it turns out that the convergence speed is very slow (see Table 6.3 below), which makes
this algorithm not really practical. Therefore, we present an alternative approach next.

4.2. The pAPS-algorithm. In [68] a fully automated parameter selection algorithm for the
L1-TV model, i.e., α2 = 0 in (1.3), and the L2-TV model, i.e., α1 = 0 in (1.3), is proposed. We
recall, that in contrast to Uzawa’s method in the algorithm from [68] no additional parameter has
to be chosen to find the regularization parameter α1 or α2 such that uα1,0 solves

min
u∈BV (Ω)

|Du|(Ω) s.t. H1(u) = ν1|Ω| (4.2)

and u0,α2
is a minimizer of

min
u∈BV (Ω)

|Du|(Ω) s.t. H2(u) = ν2|Ω|. (4.3)

The automated adjustment of the regularization parameter (α1 or α2) is performed iteratively
depending on the constraint H1(u) = ν1|Ω| in the case of the L1-TV model or on the constraint
H2(u) = ν2|Ω| in the case of the L2-TV model. For example, for the L1-TV model the parameter

α1 is increased whenever
H1(uα1,0

)

ν1|Ω| > 1 and decreased if
H1(uα1,0

)

ν1|Ω| < 1. This leads to the following
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update scheme:

α
(n+1)
1 =

(
H1(u

α
(n)
1 ,0

)

ν1|Ω|

)p
α

(n)
1 ,

where p ≥ 0 such that (H1(u
α

(n)
1 ,0

))n is monotonically decreasing, if H1(u
α

(0)
1 ,0

) > ν1|Ω|, and

(H1(u
α

(n)
1 ,0

))n is monotonically increasing, if H1(u
α

(0)
1 ,0

) ≤ ν1|Ω|.
Motivated by this strategy, we suggest the following automated parameter selection algorithm

for the L1-L2-TV model.

Algorithm 2 (pAPS-Algorithm). Initialize p > 0, α
(0)
i > 0 for i = 1, 2 and set n = 0;

1) Compute u(n) ∈ arg minu∈BV (Ω) Jα(n)
1 ,α

(n)
2

(u)

2) Update α
(n+1)
i =

(
Hi(u

(n))
νi(u(n))|Ω|

)p
α

(n)
i for i = 1, 2;

3) Solve u(n+1) ∈ arg minu∈BV (Ω) Jα(n+1)
1 ,α

(n+1)
2

(u)

4) For i = 1, 2 do
(a) if Hi(u

(0)) ≤ νi(u(0))|Ω|
(i) if Hi(u

(n+1)) > νi(u
(n+1))|Ω|, decrease p, e.g., p = p/2, and go to step 2);

(ii) if Hi(u
(n+1)) ≤ νi(u(n+1))|Ω|, continue;

(b) if Hi(u
(0)) > νi(u

(0))|Ω|
(i) if Hi(u

(n+1)) < νi(u
(n+1))|Ω|, decrease p, e.g., p = p/2, and go to step 2);

(ii) if Hi(u
(n+1)) ≥ νi(u(n+1))|Ω|, continue;

5) Stop or set n := n+ 1 and return to step 2);

As a stopping criterion we use that either (S1), (S2), or
(S3) the power p is significant small, i.e., p < ε3 = 10−3;
holds for the first time.

Note, that (νi(u
(n))|Ω|)n, i = 1, 2, is in general not constant. Nevertheless, since for a mixture

of noise the expected absolute value is here not available and difficult to compute, in our numerics
we set ν1(û) := EAV(ηû) + EAV(ρû | û), which is actually only an above approximation of the
real expected absolute value. However, note that EAV(ηû) + EAV(ρû | û) is also an element

of
[
0,
√

2
πσ + max{s1, s2}

]
or
[
0,
√

2
πσ + s

2

]
, respectively; cf. (2.3). If for example s1 = s2,

as in the experiment of Figure 4.1, then by Section 2 we have ν1(u(n)) = s1 +
√

2
πσ (i.e., ν1

is independent on the image) and hence the sequence (ν1(u(n))|Ω|)n is indeed constant, while
ν2(u(n)) = σ2 + s2(1− Tu(n))2 + s1(Tu(n))2 − (s2 − (s2 + s1)Tu(n))2 (i.e., ν2 is depending on the
image), which allows the value ν2(u(n))|Ω| to change during the iterations, although the changes
might be rather small; see Figure 4.1(c) and Figure 4.2(c).

Due to the adaptive choice of p in the pAPS-algorithm, we observe that the generated se-

quences (Hi(u
(n)))n and (α

(n)
i )n are monotonically decreasing or increasing, depending on the

initial α
(0)
i , for i = 1, 2, while for Algorithm 1 these monotonic behaviors are in general not guar-

anteed; see Figure 4.1, Figure 4.2 and Figure 4.3. In particular, we have the following result for
the pAPS-algorithm.

Lemma 4.1. The pAPS-algorithm generates monotone sequences (α
(n)
i )n, for i = 1, 2. In

particular, we have

(i) if α
(0)
i is such that Hi(u

(0)) > νi(u
(0))|Ω|, then (α

(n)
i )n is monotonically increasing, i.e.,

α
(n)
i ≤ α(n+1)

i for all n ∈ N;

(ii) if α
(0)
i is such that Hi(u

(0)) ≤ νi(u
(0))|Ω|, then (α

(n)
i )n is monotonically decreasing, i.e.,

α
(n)
i ≥ α(n+1)

i for all n ∈ N.

Proof. For Hi(u
(0)) > νi(u

(0))|Ω| we can show by induction that α
(n+1)
i ≥ α

(n)
i for all n and

i = 1, 2. In particular, Hi(u
(n)) ≥ νi(u(n))|Ω| implies α

(n+1)
i =

(
Hi(u

(n))
νi(u(n))|Ω|

)p
α

(n)
i ≥ α(n)

i , where p

is due to the pAPS-algorithm such that Hi(u
(n+1)) ≥ νi(u(n+1))|Ω|.
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By similar arguments we obtain for α
(0)
i with Hi(u

(0)) ≤ νi(u(0))|Ω|, that (α
(n)
i )n is monoton-

ically decreasing.
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Fig. 4.1. Progress of Hi(u
(n)) and νi(u

(n)), i = 1, 2, of the pAPS-algorithm with α
(0)
1 = 1 = α

(0)
2 for

restoring the image “cameraman” (see Figure 6.1(a)) corrupted by Gaussian white noise with σ = 0.1 and
salt-and-pepper noise with s1 = s2 = 0.005.
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Fig. 4.2. Progress of Hi(u
(n)) and νi(u

(n)), i = 1, 2, of the Algorithm 1 with α
(0)
1 = 1 = α

(0)
2 for

restoring the image “cameraman” (see Figure 6.1(a)) corrupted by Gaussian white noise with σ = 0.1 and
salt-and-pepper noise with s1 = s2 = 0.005. In (d) - (f) we zoomed in on the last few hundred iterations.

Due to the monotonicity property of the sequence (α
(n)
i )n for i = 1, 2 we have the following

convergence property of the pAPS-algorithm.

Theorem 4.2. For i ∈ {1, 2} the pAPS-algorithm generates a convergent sequence (α
(n)
i )n,

i.e., limn→∞ α
(n)
i = ᾱi ∈ R, if one of the following conditions holds:

(i) α
(0)
i > 0 such that Hi(u

(0)) ≤ νi(u(0))|Ω|;
(ii) there exist ᾱ1, ᾱ2 > 0 such that Hi(u

(n)) > νi(u
(n))|Ω| for all α

(n)
i < ᾱi and Hi(uα1,α2

) ≤
νi(uα1,α2

)|Ω| for all α1 ≥ ᾱ1 and α2 ≥ ᾱ2, where uα1,α2
is a solution of (1.3).

Proof.

(i) Let α
(0)
i > 0 such that Hi(u

(0)) ≤ νi(u
(0))|Ω|. Then by Lemma 4.1(ii) we have that (α

(n)
i )n
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Fig. 4.3. Progress of α
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1 and α

(n)
2 of the pAPS-algorithm in (a) and Algorithm 1 in (b) with α

(0)
1 =

1 = α
(0)
2 for restoring the image “cameraman” (see Figure 6.1(a)) corrupted by Gaussian white noise with

σ = 0.1 and salt-and-pepper noise with s1 = s2 = 0.005.

is monotonically decreasing, i.e., 0 ≤ α
(n+1)
i ≤ α

(n)
i ≤ α

(0)
i for all n ∈ N, and hence it is

bounded. The convergence follows by the monotone convergence theorem for sequences.

(ii) If there exist ᾱ1, ᾱ2 > 0 such that Hi(u
(n)) > νi(u

(n))|Ω| for all α
(n)
i < ᾱi and Hi(uα1,α2

) ≤
νi(uα1,α2

)|Ω| for all α1 ≥ ᾱ1 and α2 ≥ ᾱ2, then (α
(n)
i )n is monotonically increasing, cf.

Lemma 4.1(i), and we deduce that 0 ≤ α
(n)
i ≤ α

(n+1)
i < ᾱi for all n ∈ N. Hence (α

(n)
i )n is

bounded and consequently convergent, which concludes the proof.

Note, that α
(0)
i has to be chosen positive for i = 1, 2, since if α

(0)
i = 0 in the pAPS-algorithm,

then α
(n)
i = 0 for all n ≥ 0, and we cannot expect a reasonable result in general.

4.3. Solving the constrained problem. Instead of determining the parameters α1 and
α2 based on the constrained formulation (3.1) and then solving the L1-L2-TV model with these
parameters, as described above, we may alternatively compute a minimizer of the constrained
optimization problem (3.1) directly. This can be done, for example, by using the alternating
direction method (ADM) as in [78], where the ADM is applied for solving (4.2) and (4.3) in a
finite dimensional setting. For the convenience of the reader we describe in Appendix B a possible
implementation of this approach adapted to our problem. Other strategies, which may be adjusted
to solve problem (3.1), can be, for example, found in [22, 86, 90].

5. An algorithm for solving the L1-L2-TV model. For computing a minimizer of prob-
lem (1.3) different strategies might be used, as a primal-dual method or alternating direction
method [17, 51, 66] among others. For example, in [3] in a finite element setting the primal-dual
algorithm of Chambolle and Pock [27] is used for solving the L1-L2-TV model. However, it is not
the scope of this paper to compare different algorithms in order to detect the most efficient one,
although this is an interesting research topic in its own right. Here we consider the algorithm
suggested in [60] (without any convergence analysis), which is an adaptation of a method that
was originally proposed for L1-TV minimization problems in [8], based on replacing the functional
Jα1,α2

by

F (u, v) := α1‖v‖L1(Ω) +
1

2γ
‖T1u− g1 − v‖2L2(Ω) + α2‖T2u− g2‖2L2(Ω) + |Du|(Ω), (5.1)

where γ > 0 is small, so that we have g1 ≈ T1u − v. Actually for γ → 0 (5.1) approaches the
objective functional in (1.3). Then (5.1) is minimized alternating with respect to u and v which
results in the following algorithm:
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Algorithm 3. Initialize u(0) ∈ L2(Ω). For n = 0, 1, . . . do

v(n+1) = arg min
v∈L2(Ω)

α1‖v‖L1(Ω) +
1

2γ
‖T1u

(n) − g1 − v‖2L2(Ω) (5.2)

u(n+1) ∈ arg min
u∈L2(Ω)

1

2γ
‖T1u− g1 − v(n+1)‖2L2(Ω) + α2‖T2u− g2‖2L2(Ω) + |Du|(Ω) (5.3)

Now we are going to analyse the convergence of this algorithm.
Theorem 5.1. Assume there exist i ∈ {1, 2} such that Ti does not annihilate constant

functions and αi > 0. Then weak accumulation points of the sequence (u(n), v(n))n generated by
Algorithm 3 are minimizers of F in L2(Ω)× L2(Ω) and BV (Ω)× L2(Ω).

The proof of this statement uses the same ideas as the ones of Proposition 5 in [8]. However,
in contrary to [8] where the proof is done in a finite dimensional setting with the assumption of a
continuous objective functional, we are working in an infinite dimensional space and our functional
F is only lower semicontinuous, which requires additional arguments. Because of these reasons we
state the complete proof here.

Proof. By Algorithm 3 we have

F (u(n), v(n)) ≥ F (u(n), v(n+1)) ≥ F (u(n+1), v(n+1)). (5.4)

Since F is bounded below by 0 it follows that (F (u(n), v(n)))n is convergent. Note that F is coercive
in L2(Ω)×L2(Ω). From this and the convergence of (F (u(n), v(n)))n we deduce that (u(n), v(n))n is
bounded in L2(Ω)×L2(Ω) and hence we can extract a weakly convergent subsequence. Moreover,
due to the presence of the total variation |Du|(Ω) in F and α1 +α2 > 0 we obtain that (u(n), v(n))n
is bounded in BV (Ω)× L2(Ω). The compact embedding BV (Ω) ↪→ Lq(Ω), 1 ≤ q < d

d−1 (d = 2 is

the dimension of Ω), implies that a subsequence (u(nk), v(nk))k converges in Lq(Ω) × L2(Ω) to a
limit (u∗, v∗) ∈ L2(Ω)×L2(Ω). By [7, Prop. 10.1.1] we even have that (u∗, v∗) ∈ BV (Ω)×L2(Ω),
lim infnk→∞ |Du(nk)|(Ω) ≥ |Du∗|(Ω), and (u(nk), v(nk))k weakly converges to (u∗, v∗) in BV (Ω)×
L2(Ω) as nk → +∞. Further, we have, for all nk ∈ N

F (u(nk), v(nk+1)) ≤ F (u(nk), v)

for all v ∈ L2(Ω) and

F (u(nk), v(nk)) ≤ F (u, v(nk)) (5.5)

for all u ∈ L2(Ω). Note that (v(nk+1))k is again bounded and let us denote by ṽ a corresponding
cluster point.

Considering (5.4) we have that

F (u(nk), v(nk))− F (u(nk+1), v(nk+1)) ≥ F (u(nk), v(nk+1))− F (u(nk+1), v(nk+1)).

Since F is bounded from below, we obtain limnk→∞
[
F (u(nk), v(nk))− F (u(nk+1), v(nk+1))

]
= 0

and consequently

0 = lim
nk→∞

[
F (u(nk), v(nk+1))− F (u(nk+1), v(nk+1))

]
= F (u∗, ṽ)− F (u∗, v∗). (5.6)

By passing (5.2) to the limit we get that ṽ is a solution of minv∈L2(Ω) α1‖v‖L1(Ω) + 1
2γ ‖T1u

∗ −
g1 − v‖2L2(Ω). From (5.6) we know that F (u∗, ṽ) = F (u∗, v∗) and hence

α1‖ṽ‖L1(Ω) +
1

2γ
‖T1u

∗ − g1 − ṽ‖2L2(Ω) = α1‖v∗‖L1(Ω) +
1

2γ
‖T1u

∗ − g1 − v∗‖2L2(Ω).

By the uniqueness of the solution (F (u∗, ·) is strictly convex) we conclude that ṽ = v∗. Hence
v(nk+1) → v∗ for nk →∞.
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Moreover, v∗ = arg minv∈L2(Ω) F (u∗, v), i.e.

F (u∗, v∗) ≤ F (u∗, v) for all v ∈ L2(Ω). (5.7)

And by passing (5.5) to the limit we obtain

F (u∗, v∗) ≤
(

lim inf F (u(nk), v(nk)) ≤ lim inf F (u, v(nk)) =
)
F (u, v∗) for all u ∈ L2(Ω). (5.8)

From the definition of F the inequality in (5.7) is equivalent to

0 ∈ 1

γ
(v∗ − T1u

∗ + g1) + α1∂‖v∗‖L1(Ω) (5.9)

and (5.8) is equivalent to

0 ∈ 1

γ
T ∗1 (T1u

∗ − g1 − v∗) + 2α2T
∗
2 (T2u

∗ − g2) + ∂|Du∗|(Ω). (5.10)

The subdifferential of F at (u∗, v∗) is given by

∂F (u∗, v∗) =

( 1
γT
∗
1 (T1u

∗ − g1 − v∗) + 2α2T
∗
2 (T2u

∗ − g2) + ∂|Du∗|(Ω)
1
γ (v∗ − T1u

∗ + g1) + α1∂‖v∗‖L1(Ω)

)
.

According to (5.9) and (5.10) we have(
0
0

)
∈ ∂F (u∗, v∗)

which is equivalent to F (u∗, v∗) = min(u,v)∈L2(Ω)×L2(Ω) F (u, v).

The minimizer v(n+1) of (5.2) can be easily computed via a soft thresholding, i.e., v(n+1) =
ST(T1u

(n) − g1, γα1), where

ST(g, β)(x) =


g(x)− β if g(x) > β,

0 if |g(x)| ≤ β,
g(x) + β if g(x) < −β

for all x ∈ Ω.
The solution of the minimization problem in (5.3) can be realized by replacing F by a family

of surrogate functionals

S(u, a, v) := F (u, v) +
1

2γ

(
δ1‖u− a‖2L2(Ω) − ‖T1(u− a)‖2L2(Ω)

)
+ α2

(
δ2‖u− a‖2L2(Ω) − ‖T2(u− a)‖2L2(Ω)

)
with a, u, v ∈ L2(Ω) and δi > ‖Ti‖2 for i = 1, 2. Note that

min
u∈L2(Ω)

S(u, a, v)⇔ min
u∈L2(Ω)

∥∥∥∥u− γ

δ1 + 2α2δ2γ

(
1

γ
z1 + 2α2z2

)∥∥∥∥2

L2(Ω)

+
2γ

δ1 + 2α2δ2γ
|Du|(Ω).

(5.11)
where z1 = z1(a) = δ1a+ T ∗1 (g1 + v − T1a) and z2 = z2(a) = δ2a+ T ∗2 (g2 − T2a); cf. [60]. There
exist several numerical methods for solving (5.11) efficiently; see for example [10, 13, 15, 19, 23,
27, 31, 36, 37, 38, 41, 42, 43, 46, 57, 59, 62, 77, 81] and references therein. This leads to the
following algorithm:
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Algorithm 4. Initialize: u(0,L) ∈ L2(Ω). For n = 0, 1, . . . do

v(n+1) = arg min
v∈L2(Ω)

α1‖v‖L1(Ω) +
1

2γ
‖T1u

(n,L) − g1 − v‖2L2(Ω)

u(n+1,0) = u(n,L)

u(n+1,`+1) = arg min
u∈L2(Ω)

S(u, u(n+1,`), v(n+1)), ` = 0, . . . , L− 1. (5.12)

Note that we do prescribe a finite number L ∈ N of inner iterations.
Theorem 5.2. Let the assumption of Theorem 5.1 be satisfied and assume δi > ‖Ti‖2 for

i = 1, 2. Then weak accumulation points of the sequence (u(n,L), v(n))n generated by Algorithm 4
are minimizers of F in L2(Ω)× L2(Ω) and BV (Ω)× L2(Ω).

Proof. By Algorithm 4 we have

F (u(n,L), v(n)) ≥ F (u(n,L), v(n+1)) = S(u(n+1,0), u(n+1,0), v(n+1)) ≥ S(u(n+1,1), u(n+1,0), v(n+1))

≥ S(u(n+1,1), u(n+1,1), v(n+1)) ≥ . . . ≥ S(u(n+1,L), u(n+1,L), v(n+1)) = F (u(n+1,L), v(n+1)).

By the same arguments as in Theorem 5.1 we obtain

F (u∗, v∗) ≤ F (u∗, v) for all v ∈ L2(Ω),

where (u∗, v∗) ∈ BV (Ω)× L2(Ω) is a limit of the subsequence (u(nk,L), v(nk))k.
Next we want to show that 0 ∈ ∂F (u∗, v∗). Therefore we analyse the surrogate iteration (5.12)

in more details. By the monotonic decrease of F and S we have

F (u(n,L), v(n))−F (u(n+1,1), v(n+1)) ≥ F (u(n+1,0), v(n+1))− F (u(n+1,1), v(n+1))

≥ S(u(n+1,1), u(n+1,0), v(n+1))− S(u(n+1,1), u(n+1,1), v(n+1))

=
1

2γ

(
δ1‖u(n+1,1) − u(n+1,0)‖2L2(Ω) − ‖T1(u(n+1,1) − u(n+1,0))‖2L2(Ω)

)
+ α2

(
δ2‖u(n+1,1) − u(n+1,0)‖2L2(Ω) − ‖T2(u(n+1,1) − u(n+1,0))‖2L2(Ω)

)
≥
(

1

2γ
C1 + α2C2

)
‖u(n+1,1) − u(n+1,0)‖2L2(Ω),

where Ci := (δi − ‖Ti‖2) > 0. Moreover, we get

F (u(n+1,`), v(n+1))− F (u(n+1,`+1), v(n+1)) ≥
(

1

2γ
C1 + α2C2

)
‖u(n+1,`+1) − u(n+1,`)‖2L2(Ω).

Hence, after L steps we conclude

F (u(n,L), v(n))− F (u(n+1,L), v(n+1)) ≥
(

1

2γ
C1 + α2C2

) L−1∑
`=0

‖u(n+1,`+1) − u(n+1,`)‖2L2(Ω). (5.13)

Since the sequence (F (u(n,L), v(n)))n is convergent we deduce from (5.13) that

L−1∑
`=0

‖u(n+1,`+1) − u(n+1,`)‖2L2(Ω) → 0, n→∞,

and hence

lim
n→∞

‖u(n+1,`+1) − u(n+1,`)‖2L2(Ω) = 0
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for all ` ∈ {0, . . . , L − 1}. Consequently, the sequences (u(nk,L)) and (u(nk,L−1)) have the same
limit u∗.

By the optimality of u(nk,L) we have

0 ∈ ∂S(·, u(nk,L−1), v(nk))(u(nk,L))

= ∂F (·, v(nk))(u(nk,L)) +
1

γ

(
δ1(u(nk,L) − u(nk,L−1))− T ∗1 T1(u(nk,L) − u(nk,L−1))

)
+ 2α2

(
δ2(u(nk,L) − u(nk,L−1))− T ∗2 T2(u(nk,L) − u(nk,L−1))

)
Then, by letting nk →∞ we obtain

0 ∈ ∂S(·, u∗, v∗)(u∗) = ∂F (·, v∗)(u∗).

The rest of the proof is analogous to the proof of Theorem 5.1.
Remark 5.3 (Denoising). If T1 = T2 = I, then we do not need surrogate functionals and use

Algorithm 3 directly, since the minimization problem in (5.3) is equivalent to

arg min
u∈L2(Ω)

∥∥∥∥u− γ

1 + 2α2γ

(
1

γ
(g1 + v) + 2α2g2

)∥∥∥∥2

L2(Ω)

+
2γ

1 + 2α2γ
|Du|(Ω)

and can be solved as (5.11) by one of the methods mentioned above.

6. Numerical Experiments. In this section we present several numerical experiments on
image denoising and image deblurring to show the behavior of the proposed algorithm and their
restoration potential. As a comparison for the different restoration qualities of the image we use
the PSNR [16] (peak signal-to-noise ratio) given by

PSNR = 20 log
1

‖û− u∗‖
,

where û denotes the original image before any corruption and u∗ the restored image, which is widely
used as an image quality assessment measure, and the MSSIM [88] (mean structural similarity),
which usually relates to perceived visual quality better than PSNR. In general, when comparing
PSNR and MSSIM, large values indicate better reconstruction than small values.

The minimization problem in the pAPS-algorithm as well as in Algorithm 1 is solved approx-
imately by Algorithm 3 or Algorithm 4, where γ = 10−2. Moreover, the initial power p in the
pAPS-algorithm is chosen to be 1 in all our experiments.

For our numerical studies we consider the images shown in Figure 6.1 of size 256× 256 pixels.
We recall, that the image intensity range of all examples considered in this paper is [0, 1].

Since for a mixture of noise the expected absolute value is here not available and difficult to
compute, in our numerics we set ν1(û) := EAV(ηû)+EAV(ρû | û), which is actually only an above
approximation of the real expected absolute value. However, note that EAV(ηû) + EAV(ρû | û)

is also an element of
[
0,
√

2
πσ + max{s1, s2}

]
or
[
0,
√

2
πσ + s

2

]
, respectively. Moreover, we recall,

that ν1 as well as ν2 are computed based on some approximation of the true image. More precisely,
in Algorithm 1, the pAPS-algorithm, and the ADM νi is updated in each iteration by νi = νi(u

(n)),
i = 1, 2.

All the presented experiments are performed in MATLAB on a MacBook Pro with 2.5 GHz
Intel Core i7 processor.

6.1. Initial value α
(0)
i . We start by investigating the pAPS-algorithm concerning its stability

with respect to the initial α
(0)
i , i = 1, 2. For this purpose we consider the 256 × 256 pixel image

“cameraman” corrupted by Gaussian white noise with σ = 0.1 and salt-and-pepper noise with

s1 = s2 = 0.005 and test for α
(0)
1 , α

(0)
2 ∈ {0.1, 0.5, 1}. Our findings are summarized in Table

6.1, i.e., the obtained parameters α1 and α2 and the PSNR and MSSIM of the corresponding
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(a) “cameraman”1 (b) “barbara”

Fig. 6.1. Original images of size 256× 256 pixels.

α
(0)
1 α

(0)
2 PSNR MSSIM α∗

1 α∗
2

1 1 25.11 0.7163 0.7790 0.8166
1 0.5 25.16 0.7051 0.8541 0.4562
1 0.1 25.03 0.6998 0.9230 0.0971

0.5 1 24.87 0.7498 0.5241 1.2271
0.5 0.5 24.55 0.7478 0.5943 0.8918
0.5 0.1 24.36 0.7405 0.7175 0.3330
0.1 1 25.17 0.7470 0.1644 3.0531
0.1 0.5 25.14 0.7483 0.2150 2.7935
0.1 0.1 25.03 0.7509 0.3710 1.9926

Table 6.1
PSNR and MSSIM results for the 256 × 256 pixel image “cameraman” corrupted by Gaussian white

noise with σ = 0.1 and salt-and-pepper noise with s1 = s2 = 0.005 obtained by the pAPS-algorithm.

received reconstructions. The obtained parameters α1 and α2 are always relatively close to the

initial α
(0)
1 and α

(0)
2 . Note, that even if problem (3.1) may have a unique minimizer there may

exist pairs (α1
1, α

1
2) and (α2

1, α
2
2) with (α1

1, α
1
2) 6= (α2

1, α
2
2) such that uα1

1,α
1
2

= uα2
1,α

2
2
, which can be,

for example, easily seen from (4.1) and [60, Example 2.1]. We actually observe, that although the
α1’s and α2’s differ significantly from each other, the PSNR and MSSIM seem similar throughout
the experiments.

In order to keep the number of iterations in the pAPS-algorithm small a good choice of the

initial values is still desirable. Therefore in the sequel we choose α
(0)
i , i = 1, 2, according to [73],

i.e., we set α
(0)
1 and α

(0)
2 as in (1.4). By incorporating (1.4) for the choice of the initial parameters

in the pAPS-algorithm makes this method fully automatic for the user.

6.2. Gaussian plus impulse noise. For the simultaneous removal of Gaussian and impulse
noise we compare the performance of Algorithm 1, the pAPS-algorithm, and the ADM for solving
directly the constrained problem (3.1) with the frequently used ROAD-trilateral filter [52], which
is designed to remove a mixture of Gaussian noise (with zero mean and variance σ2) and impulse
noise. This filter is based on a simple statistic to detect outliers in an image. Moreover, we
also report on the results obtained by the L1-L2-TV model with α1 and α2 chosen as suggested
in [73], i.e., as in (1.4). In this case a minimizer is approximately computed by Algorithm 3
and in the case of deblurring by Algorithm 4. In the sequel we refer to them as the L1-L2-TV
algorithm. For our comparison we restore the “cameraman” image (see Figure 6.1(a)) and the
“barbara” image (see Figure 6.1(b)) for mixed Gaussian-impulse noise with different noise levels,
i.e., σ ∈ {0.01, 0.1,

√
0.02}, s1 = s2 ∈ {0.005, 0.01, 0.05, 0.15}, and s ∈ {0.005, 0.01, 0.05, 0.15}.

For simultaneously removing Gaussian and salt-and-pepper noise in the “cameraman” image
we summarize our findings in Table 6.2. There it is demonstrated that the L1-L2-TV algorithm
with parameters chosen as in [73], i.e., as in equation (1.4), produces competitive results, which
are actually always better than the ones generated by the ROAD-trilateral filter. Setting the

1Used with kind permission, c© Massachusetts Institute of Technology
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initial parameters to (1.4) the pAPS-algorithm finds automatically new parameters (α1, α2) which
improve the restoration quality of the L1-L2-TV algorithm. In particular, in Figure 6.2 we see
that the numerical solution produced by the L1-L2-TV algorithm with the parameters as in [73]
is over-smoothed, while the result generated by the pAPS-algorithm shows more details and has
sharper edges. For this particular example in Figure 6.2 the ADM and Algorithm 1 produce the
best results not only with respect to PSNR and MSSIM but also visually. Figure 6.2(d) and (e)
show that edges are well preserved and noise is considerable removed. From Table 6.2 we further
observe, that these two methods have the best performance with respect to PSNR and MSSIM
when s1 = s2 is sufficiently small. However, they show signs of weakness when s1 = s2 is large,
e.g., s1 = s2 = 0.15 in our experiments. In contrast, the pAPS-algorithm does not suffer from
this weakness and outperforms the ADM and Algorithm 1 for these noise-levels. Moreover, the
pAPS-algorithm gives always better MSSIM than the ROAD-trilateral filter and the L1-L2-TV
method with parameters as in (1.4); see Table 6.2 and Figure 6.2.

(a) corrupted image (b) ROAD (PSNR: 22.36;
MSSIM: 0.6118)

(c) Parameters as in [73]
(PSNR: 23.01; MSSIM:
0.7135)

(d) ADM (PSNR: 24.46;
MSSIM: 0.7214)

(e) Algorithm 1 (PSNR:
24.41; MSSIM: 0.7241)

(f) pAPS-algorithm
(PSNR: 23.60; MSSIM:
0.7192)

Fig. 6.2. Reconstruction of the images “cameraman” corrupted by mixed Gaussian - salt-and-pepper
noise with σ =

√
0.02, s1 = s2 = 0.01.

In Table 6.3 we report on the CPU-times (in seconds) for obtaining the results of Table
6.2. This table shows that Algorithm 1 converges tremendously slow and hence is in general not
practical. The ADM needs about the same time for finding a minimizer of the constrained problem
(3.1) as the pAPS-algorithm for generating a reasonable reconstruction. In the third and fourth
column we also report on the CPU-times of the ROAD-trilateral filter as well as of the L1-L2-TV
algorithm, where no adjustment of the parameters is performed.

Almost similar observations as for denoising the “cameraman” image are also made for the
“barbara” image; see Figure 6.3. We again see that the pAPS-algorithm produces a result which
improves the one from the L1-L2-TV algorithm with parameters as in [73]. Additionally now,
for this image the pAPS-algorithm generates a reconstruction which is even better than the one
of the ADM with respect to PSNR and MSSIM. When we look at Figure 6.3 then we observe
that the ADM produces a slightly over-smoothed reconstruction. Hence the reason for the worse
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ROAD-trilateral parameters as in [73] ADM
σ s1 = s2 PSNR MSSIM PSNR MSSIM α1 α2 PSNR MSSIM√
0.02 0.005 22.42 0.6141 22.90 0.7116 0.2000 0.8000 24.92 0.7379

0.01 22.36 0.6134 23.01 0.7135 0.3333 0.6667 24.46 0.7214
0.05 21.86 0.5968 23.44 0.6619 0.7143 0.2857 22.09 0.6628
0.15 18.55 0.4543 21.96 0.5160 0.8824 0.1176 18.79 0.5636

0.1 0.005 23.28 0.7011 23.29 0.7290 0.3333 0.6667 25.77 0.7483
0.01 23.25 0.7004 23.79 0.7419 0.5000 0.5000 25.25 0.7318
0.05 22.69 0.6859 24.27 0.6956 0.8333 0.1667 22.64 0.6582
0.15 20.28 0.5895 22.91 0.5954 0.9375 0.0625 18.96 0.5558

0.01 0.005 24.78 0.8293 26.08 0.8625 0.9804 0.0196 33.09 0.9402
0.01 24.72 0.8283 26.02 0.8618 0.9901 0.0099 31.48 0.9324
0.05 23.99 0.8163 25.59 0.8509 0.9980 0.0020 27.18 0.8683
0.15 21.77 0.7562 24.27 0.8084 0.9993 0.0007 23.90 0.7914

Algorithm 1 pAPS-algorithm
σ s1 = s2 PSNR MSSIM α1 α2 PSNR MSSIM α1 α2√
0.02 0.005 24.85 0.7383 0.1171 0.8031 24.05 0.7245 0.2538 1.5717

0.01 24.41 0.7241 0.1115 0.7250 23.60 0.7192 0.3720 1.0323
0.05 22.12 0.6639 0 0.8923 22.86 0.6962 0.5114 0.2519
0.15 18.76 0.5671 0 0.6951 21.04 0.6332 0.4392 0.0940

0.1 0.005 25.77 0.7515 0.2650 0.7215 24.95 0.7509 0.4552 1.5618
0.01 25.36 0.7446 0.2871 0.5769 24.45 0.7429 0.5855 0.8821
0.05 22.99 0.6870 0.1094 0.5808 23.80 0.7220 0.7013 0.1565
0.15 18.96 0.5569 0 0.8207 22.59 0.6722 0.7002 0.0575

0.01 0.005 29.83 0.8561 1.0360 0 31.73 0.9461 2.6315 0.0373
0.01 30.59 0.8822 1.0535 0 29.98 0.9375 2.1241 0.0143
0.05 26.91 0.8375 0.8304 0 26.65 0.8844 1.3618 0.0021
0.15 23.91 0.7558 0.5866 0 24.79 0.8206 1.2273 0.0008

Table 6.2
PSNR and MSSIM results for the 256 × 256 pixel image “cameraman” corrupted by Gaussian white

noise and salt-and-pepper noise. The parameters of the ROAD-trilateral filter are σS = 1, σI = 40/255,
σJ = 30/255, and σR is optimized between 10/255 and 50/255, as suggested in [45].

σ s1 = s2 ROAD parameters as in [73] ADM Algorithm 1 pAPS-algorithm√
0.02 0.005 7 6 475 36950 290

0.01 8 7 475 13323 293
0.05 8 11 326 14227 362
0.15 7 26 333 3081 515

0.1 0.005 7 6 506 54645 266
0.01 7 7 420 94541 287
0.05 7 12 406 17120 377
0.15 7 25 329 10201 705

0.01 0.005 7 4 226 31090 88
0.01 7 4 209 37974 95
0.05 8 11 102 42191 288
0.15 7 22 349 49262 1003

Table 6.3
CPU-times (in seconds) for obtaining the results of Table 6.2.

performance here might be this smoothing, which seems to do a good job for the “cameraman”
image, see Figure 6.2, while for the “barbara” image, where for example the pattern on the scarf
needs to be preserved, it is counterproductive leading to a smaller PSNR and MSSIM.

For denoising the “cameraman” and “barbara” image corrupted by Gaussian and random-
valued impulse noise we make analogues observations as above for removing a mixture of Gaussian
and salt-and-pepper noise; see Table 6.4 and Figure 6.4. That is, as above the pAPS-algorithm
improves the restoration quality of the L1-L2-TV algorithm with parameters as in [73] or generates
at least a result with the same MSSIM. This improvement is visible in Figure 6.4 for the “camera-
man” image as well as for the “barbara” image. In particular, we see there for both examples that
the results of the pAPS-algorithm preserve more details than the ones of the L1-L2-TV algorithm
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(a) corrupted image (b) ROAD (PSNR: 21.65;
MSSIM: 0.5626)

(c) Parameters as in [73]
(PSNR: 22.46; MSSIM:
0.6030)

(d) ADM (PSNR: 22.47;
MSSIM: 0.5767)

(e) pAPS-algorithm
(PSNR: 22.77; MSSIM:
0.6245)

Fig. 6.3. Reconstruction of the images “barbara” corrupted by mixed Gaussian - salt-and-pepper noise
with σ =

√
0.02, s1 = s2 = 0.01.

with parameters as in [73]. For σ =
√

0.02 and s = 0.01 the ADM produces with respect to PSNR
and MSSIM the best result for the “cameraman” image, while for the “barbara” image it is again
topped by the pAPS-algorithm, see Figure 6.4. Also here we observe that the ROAD-trilateral
filter is clearly outperformed by the L1-L2-TV model.

Further we illustrate the successful application of our proposed algorithm when salt-and-
pepper noise and Gaussian noise is disjoint present. More precisely, we consider the image in
Figure 6.5 where the lower half g1 is contaminated with salt-and-pepper noise and in the upper
half g2 only Gaussian noise is contained. This is an example where g1 6= g2, although rather
artificial, it is very interesting from a numerical point of view, since it is not possible to obtain
a correct global solution by just cutting the image into an upper and a lower part due to the
non-additivity of the total variation [60]. Note, that, since g1 and g2 are disjoint and T1 and
T2 are restriction operators to the lower half and the upper half, respectively, problem (3.1) is
superconsistent and consequently the feasible set U is non-empty. This justifies the use of the
proposed pAPS-algorithm and the ADM for this setting. In particular, we demonstrate with the
help of this algorithm that with the correct choice of the parameters α1 and α2 the L1-L2-TV
model is able to remove both types of noise considerably while preserving details at the same time
from such images; see Figure 6.5(e). A similarly good result is obtained by solving the constrained
problem (3.1) via the ADM; see Figure 6.5(d). On the contrary, the parameters according to (1.4)
obviously yield an over-smoothed restoration, see Figure 6.5(c), and thus this parameter choice
rule is not suitable for such an application. Figure 6.5 also shows that the ROAD-trilateral filter
does not work well for this task, since it does not remove the Gaussian noise sufficiently and
over-smooths the salt-and-pepper contaminated part.

6.3. Reconstruction of blurred and noisy images. Now we are investigating the be-
havior of the proposed pAPS-algorithm and the ADM by solving (3.1) directly for reconstructing
blurred images which are additionally contaminated by mixed noise. In particular, we consider
again the “cameraman” and “barbara” image and add Gaussian blur with kernel size 5 × 5 pix-
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(a) corrupted image (b) ROAD (PSNR: 22.33;
MSSIM: 0.6145)

(c) Parameters as in [73]
(PSNR: 22.86; MSSIM:
0.7097)

(d) ADM (PSNR: 25.26;
MSSIM: 0.7594)

(e) pAPS-algorithm
(PSNR: 24.13; MSSIM:
0.7311)

(f) corrupted image (g) ROAD (PSNR: 21.63;
MSSIM: 0.5620

(h) Parameters as in [73]
(PSNR: 22.26; MSSIM:
0.5851)

(i) ADM (PSNR: 23.02;
MSSIM: 0.6202)

(j) pAPS-algorithm
(PSNR: 23.06; MSSIM:
0.6425)

Fig. 6.4. Reconstruction of the images “cameraman” and “barbara” corrupted by mixed Gaussian -
random-valued impulse noise with σ =

√
0.02, s = 0.01.
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ROAD-trilateral parameters as in [73]
σ p PSNR MSSIM PSNR MSSIM α1 α2√
0.02 0.005 22.34 0.5629 22.79 0.7071 0.0769 0.9231

0.01 22.33 0.5620 22.86 0.7097 0.1429 0.8571
0.05 22.23 0.5577 23.21 0.7104 0.4545 0.5455
0.15 21.93 0.5439 22.89 0.6424 0.7143 0.2857

0.1 0.005 22.92 0.6060 23.00 0.7161 0.1429 0.8571
0.01 22.93 0.6054 23.17 0.7232 0.2500 0.7500
0.05 22.84 0.6028 24.03 0.7365 0.6250 0.3750
0.15 22.65 0.5952 23.68 0.6823 0.8333 0.1667

0.01 0.005 23.26 0.6542 26.03 0.8600 0.9434 0.0566
0.01 23.27 0.6540 26.08 0.8619 0.9709 0.0291
0.05 23.21 0.6535 25.90 0.8578 0.9940 0.0060
0.15 23.12 0.6518 25.32 0.8397 0.9980 0.0020

ADM pAPS-algorithm
σ p PSNR MSSIM PSNR MSSIM α1 α2√
0.02 0.005 25.51 0.7669 24.30 0.7298 0.1076 2.2475

0.01 25.26 0.7594 24.13 0.7311 0.1854 1.7897
0.05 23.90 0.7152 23.21 0.7104 0.4545 0.5455
0.15 21.78 0.6539 22.38 0.6721 0.5329 0.2592

0.1 0.005 26.78 0.7879 25.37 0.7633 0.2278 2.9287
0.01 26.42 0.7787 25.11 0.7601 0.3602 2.0526
0.05 24.66 0.7172 24.03 0.7365 0.6250 0.3750
0.15 22.20 0.6446 23.59 0.6916 0.7666 0.1640

0.01 0.005 34.26 0.9400 33.57 0.9516 3.4075 0.3228
0.01 33.41 0.9416 31.91 0.9480 2.6103 0.0790
0.05 28.53 0.8951 28.88 0.9209 1.7779 0.0078
0.15 26.69 0.8582 26.85 0.8734 1.5146 0.0024

Table 6.4
PSNR and MSSIM results for the image “cameraman” corrupted by Gaussian white noise and random-

valued impulse noise. The parameters of the ROAD-trilateral filter are σS = 1, σI = 40/255, σJ = 30/255,
and σR is optimized between 10/255 and 50/255, as suggested in [45].

(a) corrupted image (b) ROAD (PSNR: 22.25;
MSSIM: 0.7092)

(c) Parameters as in [73]
(PSNR: 21.37; MSSIM:
0.6707)

(d) ADM (PSNR: 24.59;
MSSIM: 0.8227)

(e) pAPS-algorithm
(PSNR: 25.23; MSSIM:
0.7991)

Fig. 6.5. Reconstruction of the image “cameraman” corrupted by Gaussian noise with σ = 0.1 (upper
part) and salt-and-pepper noise with s1 = s2 = 0.15 (lower part).
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els and standard deviation 10 and corrupt it additionally by mixed Gaussian-impulse noise with
σ = 15/255, s1 = s2 = 0.01 in the case of salt-and-pepper noise, and s = 0.01 in the case of
random-valued impulse noise. For the sake of performance reference here we also compare the
results of the pAPS-algorithm and the ADM with the ones obtained by the L1-L2-TV algorithm
with parameters as suggested in [73]. In Figure 6.6 and Figure 6.7 we show the respective results.
We observe again that the parameters chosen by the pAPS-algorithm are more optimal than the
ones suggested in [73], indicated by a larger PSNR and MSSIM. This is also visible in Figure 6.6
and Figure 6.7, where the reconstructions of the pAPS-algorithm seem less blurred. Moreover,
as above with respect to PSNR and MSSIM the ADM generates a better reconstruction than the
pAPS-algorithm for the “cameraman” image, while for the “barbara” image the pAPS performs
best.

(a) corrupted image (b) Parameters as in [73]
(PSNR: 22.34; MSSIM:
0.6918)

(c) ADM (PSNR: 23.44;
MSSIM: 0.7304)

(d) pAPS-algorithm
(PSNR: 22.81; MSSIM:
0.7042)

(e) corrupted image (f) Parameters as in [73]
(PSNR: 22.42; MSSIM:
0.5962)

(g) ADM (PSNR: 22.44;
MSSIM: 0.5987)

(h) pAPS-algorithm
(PSNR: 22.52; MSSIM:
0.6037)

Fig. 6.6. Reconstruction of the images “cameraman” and “barbara” image corrupted by Gaussian blur
(kernel-size 5 × 5; standard deviation 10) and mixed Gaussian - salt-and-pepper noise with σ = 15/255,
s1 = s2 = 0.01.

7. Conclusion. To fully utilize the strength and advantages of the L1-L2-TV model the
proper choice of the parameters α1 and α2 is essential, since they have a big influence on the
restoration quality, as we see from our experiments. Therefore we present a fully automated algo-
rithm, called pAPS-algorithm, for choosing appropriate parameters for the L1-L2-TV minimization
problem. The automated adjustment of the parameters is based on the discrepancy principle and

inspired by the work in [68]. As initial values α
(0)
i in the pAPS-algorithm we suggest to use the

choice in (1.4). In this setting this method is fully automatic and generates parameters that give a
satisfactory reconstruction, which are better than the ones obtained by the parameter-choice rule
suggest in [73].

Due to the proposed automated parameter selection rule we are able to confirm and demon-
strate once more that the L1-L2-TV model is suitable to reconstruct images corrupted by mixed
Gaussian-impulse noise and possibly some blur; cf. [60].

Moreover, we link the L1-L2-TV model to the constrained optimization problem (3.1), which
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(a) corrupted image (b) Parameters as in [73]
(PSNR: 22.31; MSSIM:
0.6922)

(c) ADM (PSNR: 23.43;
MSSIM: 0.7300)

(d) pAPS-algorithm
(PSNR: 22.69; MSSIM:
0.7056)

(e) corrupted image (f) Parameters as in [73]
(PSNR: 22.46; MSSIM:
0.5987)

(g) ADM (PSNR: 22.62;
MSSIM: 0.6115)

(h) pAPS-algorithm
(PSNR: 22.62; MSSIM:
0.6123)

Fig. 6.7. Reconstruction of the “cameraman” and “barbara” image corrupted by Gaussian blur (kernel-
size 5 × 5; standard deviation 10) and mixed Gaussian - random-valued impulse noise with σ = 15/255,
s = 0.01.

may be directly solved utilizing the ADM.

Future improvements of the L1-L2-TV model may include spatially varying parameters, as
considered in [48, 61, 68] for the L1-TV model and L2-TV model. In particular, large parameters
α1 and α2 should perform well in regions with small texture, while small parameters remove noise
considerable in homogeneous regions. Also including an impulse noise detector in the model might
be of future interest to enhance its performance of removing mixed Gaussian-impulse noise.
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Appendix A. Calculation of the statistical values of Section 2. In the following X
and Y denote random variables and P denotes the probability of an event, e.g., P(X = 0) denotes
the probability of X being 0.

A.1. Salt-and-pepper noise. Let X be a random variable distributed according to the
probability density function of salt-and-pepper noise given as

fsp(X | û) =


1− s1 − s2 if X = 0,

s1 if X = −T û,
s2 if X = 1− T û.

Then the expected value of ρû calculates as

E(ρû | û) = 0 · P(ρû = 0)− (T û) · P(ρû = −T û) + (1− T û) · P(ρû = 1− T û) = s2(1− T û)− s1T û.
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For the variance and the expected absolute value we obtain

Var(ρû | û) = E(ρ2
û)− E(ρû)2 = s2(1− T û)2 + s1(T û)2 − (s2(1− T û)− s1T û)2,

EAV(ρû | û) := E(|ρû| | û) = s2(1− T û) + s1T û.

A.2. Random-valued impulse noise. In case of random-valued impulse noise the proba-
bility density function is described as

frv(X | û) =

{
1− s if X = 0,

s if X = Y − T û,

where Y is a uniformly distributed random variable in the interval [0, 1]. Then we get

E(ρû | û) =

∫ 1

0

s(Y − T û)dY = s

(
1

2
− T û

)
,

Var(ρû | û) =

∫ 1

0

s(Y − T û)2dY − s2

(
1

2
− T û

)2

= s

(
1

3
− T û+ (T û)2

)
− s2

(
1

2
− T û

)2

,

EAV(ρû | û) =

∫ 1

0

s|Y − T û|dY =

∫ 1

T û

s(Y − T û)dY +

∫ T û

0

s(T û− Y )dY

= s

(
1

2
− T û+ (T û)2

)
.

Appendix B. Applying the ADM for solving (3.1). Similar as in [78] the ADM can be
utilized to solve the constrained problem (3.1) in a finite dimensional setting, i.e.,

min
u∈RN

‖∇u‖1 s.t. 1
N ‖Tiu− gi‖

i
i ≤ νi for i = 1, 2, (B.1)

where N ∈ N denotes the number of pixels in the image, gi ∈ RN is the discrete observed data
vector, Ti ∈ RN×N denotes a discrete operator for i = 1, 2, and∇ ∈ R2N×N is the discrete gradient

operator. ‖ · ‖i refers to the standard definition of the `i-norm, i.e, ‖u‖i :=
(∑N

j=1 |uj |i
) 1
i

and

〈·, ·〉 denotes the `2 inner product. Moreover, û ∈ RN describes the original (unknown) data.
In order to apply the ADM to problem (B.1) we rewrite it as follows:

min
w∈RN×RN

‖w‖1 s.t. w = ∇u, zi = Tiu,
1
N ‖zi − gi‖

i
i ≤ νi for i = 1, 2,

which is equivalent to

min
w∈RN×RN ,zi∈RN

‖w‖1 + χZ1
(z1) + χZ2

(z2) s.t. w = ∇u, zi = Tiu for i = 1, 2,

where Zi(û) := {z ∈ RN : 1
N ‖z− gi‖

i
i ≤ νi(û)} for i = 1, 2 and χZ is the characteristic function of

the set Z, i.e., χZ(z) =

{
0 if z ∈ Z,
∞ otherwise.

The augmented Lagrangian of this problem is

L(u, v, λ) = f(v; û) + 〈λ,Bu− v〉+
β

2
‖Bu− v‖22,

with v =

wz1

z2

 ∈ R4N , f(v; û) = ‖w‖1 +χZ1(û)(z1)+χZ2(û)(z2), B =

∇T1

T2

 ∈ R4N×N , and β > 0

denoting the penalty parameter. Hence the ADM for solving (B.1) runs as follows:
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Algorithm 5 (ADM). Initialize v(0) ∈ R4N , λ(0) ∈ R4N and set n = 0;
1) Compute u(n+1) ∈ arg minu〈λ(n), Bu− v(n)〉+ β

2 ‖Bu− v
(n)‖22

2) Compute v(n+1) = arg minv f(v;u(n+1)) + 〈λ(n), Bu(n+1) − v〉+ β
2 ‖Bu

(n+1) − v‖22
3) Update λ(n+1) = λ(n) + β(Bu(n+1) − v(n+1))
4) Stop or set n = n+ 1 and continue with step 1).

In order to obtain u(n+1) in step 1) a linear system that may be diagonalized by the DFT is to
solve. Since û is not at our disposal, we use in the function f instead the current approximate
u(n+1); see step 2). Then the solution of the minimization problem in step 2) might be computed as
described in [78, Section 4.2] by soft thresholding and projection onto a weighted `i-ball, i = 1, 2;
see [89] for detailed information on how to implement such a projection.

Although, the ADM is convergent for any β > 0, see for example [17, 51, 56], in our implemen-
tation we adjust β in every iteration as proposed in [78] by starting with β(0) = 100 in order to
obtain a good numerical performance. Moreover, we use the same stopping criterion as suggested
in [78].
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[30] T. F. Chan and S. Esedoḡlu. Aspects of total variation regularized L1 function approximation. SIAM J. Appl.
Math., 65(5):1817–1837, 2005.

[31] T. F. Chan, G. H. Golub, and P. Mulet. A nonlinear primal-dual method for total variation-based image
restoration. SIAM J. Sci. Comput., 20(6):1964–1977, 1999.

[32] T. F. Chan and J. J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic
Methods. Siam, 2005.

[33] E. Chouzenoux, A. Jezierska, J.-C. Pesquet, and H. Talbot. A convex approach for image restoration with
exact Poisson–Gaussian likelihood. SIAM Journal on Imaging Sciences, 8(4):2662–2682, 2015.

[34] R. Ciak, B. Shafei, and G. Steidl. Homogeneous penalizers and constraints in convex image restoration.
Journal of Mathematical Imaging and Vision, 47(3):210–230, 2013.

[35] P. G. Ciarlet. Introduction to Numerical Linear Algebra and Optimisation. Cambridge Texts in Applied
Mathematics. Cambridge University Press, Cambridge, 1989. With the assistance of Bernadette Miara
and Jean-Marie Thomas, Translated from the French by A. Buttigieg.
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