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Abstract. Alternating and parallel overlapping domain decomposition methods for the minimization of the
total variation are presented. Their derivation is based on the predual formulation of the total variation minimization
problem. In particular, the predual total variation minimization problem is decomposed into overlapping domains
yielding subdomain problems in the respective dual space. Subsequently these subdomain problems are again
dualized, forming a splitting algorithm for the original total variation minimization problem. The convergence of
the proposed domain decomposition methods to a solution of the global problem is proven. In contrast to other
works, the analysis is carried out in an infinite dimensional setting. Numerical experiments are shown to support
the theoretical results and to demonstrate the effectiveness of the algorithms.
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1. Introduction. Minimizing the total variation in the context of image denoising was first
proposed in [49] and has gained a lot of attention since then, because it allows to preserve edges
and discontinuities in images. In this approach one typically minimizes an energy consisting of
a data-fidelity term, which enforces the consistency between the observed and obtained image, a
total variation term, as regularizer, and a parameter weighting the importance of these two terms.
The choice of the data-term depends on the type of noise contamination. Here we assume that the
observed image g is corrupted by additive Gaussian noise, i.e., g = û+ η, where û is the unknown
true image and η represents the noise. For such images usually a quadratic L2-data fidelity term
is chosen; see for example [6, 9] and references therein. That is, the image û is recovered from the
observation g ∈ L2(Ω) by solving

(1.1) arg min
u∈L2(Ω)

{
J(u) :=

1

2
‖u− g‖2L2(Ω) + α

∫
Ω

|Du|
}

where Ω ⊂ R2 is an open bounded set with Lipschitz boundary, α > 0 is the regularization param-
eter and

∫
Ω
|Du| = sup{

∫
Ω
udivp dx : p ∈ C1

0 (Ω,R2), |p|`2 ≤ 1 almost everywhere (a.e.) in Ω}
denotes the total variation of u in Ω [3, 29] with C1

0 (Ω,R2) being the space of continuously differen-
tiable vector valued functions with compact support in Ω. Here and in the rest of the paper, bold
letters indicate vector valued functions. Note that different fidelity terms have been considered in
connection with other types of noise, as impulse noise [2, 46, 47], Poisson noise [44], multiplicative
noise [4], Rician noise [28], mixed noise [7, 15, 19, 32, 40, 42].

Existing state-of-the-art methods for solving (1.1), as described in [6, 9], perform well for
small- and medium-scale problems. However, they are not able to perform in realistic CPU-time
large-scale problems. Such large-scale problems, occur nowadays in nearly every application in
image reconstruction, due to the improvement of hardware. In order to deal with these huge
problems, new methods need to be developed.

It has been shown multiple times [48, 53], that domain decomposition methods are one of the
most successful methods to construct efficient solvers for large-scale problems. This is due to the
fact that they allow for decomposing the original problem into a sequence of smaller problems,
which may be distributed on several processors with the possibility of parallelization. While for
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2 A. LANGER AND F. GASPOZ

domain decomposition methods minimizing smooth energies, the convergence, rate of convergence,
and independence of the rate of convergence from the mesh size of discretization are well estab-
lished, not much is known for minimizing nonsmooth and nonadditive functionals. Note, that
the energy in (1.1) is nonsmooth and nonadditive, due to the presence of the total variation. We
remark, that for nonsmooth problems, the resulting splitting algorithms still work fine as long as
the energy splits additively with respect to the domain decomposition. For such problems con-
vergence and sometimes even rate of convergence are ensured; see for example [23, 54]. Moreover,
for image deblurring problems preconditioning effects of a specific subspace correction algorithm
for minimizing a nonsmooth energy are shown in [55]. For nonsmooth and nonadditive energies,
however, the research on subspace correction methods is far from being complete, and for some
problem classes counterexamples do exist indicating failure of splitting techniques; see e.g. [24, 57].

For introducing domain decomposition strategies for solving problem (1.1) the major diffi-
culty lies in the correct treatment of the interfaces of the domain decomposition patches, i.e. the
preservation of crossing discontinuities and the correct matching where the solution is continuous.
We emphasize that for well-known approaches as those in [8, 11, 51, 52] it is not clear yet whether
they indeed converge to a global minimizer for nonsmooth and nonadditive problems, as any con-
vergence theory in this direction is missing. Nevertheless, in [14] and [58] the subspace correction
approaches of [51, 52] are used to solve smoothed versions of (1.1).

In [25, 26, 27, 43, 50] nonoverlapping and overlapping domain decomposition methods for total
variation minimization are described. Thereby, the convex objective under some linear constraint,
ensuring the correct treatment of the internal interfaces, is iteratively minimized on each subdo-
main. While in these papers an implementation guaranteeing convergence and monotonic decay
of the objective energy is provided, convergence to the global minimizer of the total variation
problem cannot be ensured, in general. In [26] a proof establishing convergence of overlapping
domain decomposition algorithms to the global solution in a discrete setting is presented, which,
however, only holds for one-dimensional problems. It is not clear yet how to extend this proof to
any finite dimensional space without introducing additional assumptions. Moreover, an extension
to infinite dimensional spaces is also missing till now.

For a class of nonsmooth and nonadditive convex variational problems with a combined L1/L2

data fidelity term in [32, 33] overlapping and nonoverlapping domain decomposition methods are
presented. In particular, their convergence and monotonic decay of the energy is theoretically
ensured. Moreover, an estimate of the distance of the limit point obtained from the domain
decomposition methods to the true global minimizer is derived. With the help of this estimate it is
demonstrated by numerical experiments that the domain decomposition methods indeed generate
sequences which converge to the global minimizer. However, a theoretical proof of convergence of
the domain decomposition methods to the global solution is missing.

Without any rigorous theoretical analysis in [21] domain decomposition methods for solving
(1.1) by graph cuts are introduced and applied to the task of image segmentation. Moreover,
for image segmentation using the Chan-Vese model [12] and based on a primal-dual formulation
recently nonoverlapping domain decomposition methods are presented in [20].

In order to tackle the difficulties due to the minimization of a nonsmooth and nonadditive
objective in (1.1), in [13, 34] a predual problem of (1.1), see [31, 38] for the derivation of the latter,
is considered. In fact, a predual of (1.1) reads:

min
1

2
||divp + g||2L2(Ω) over p ∈ H0(div,Ω)

s.t. |p(x)|`2 ≤ α for almost all (f.a.a.) x ∈ Ω,
(1.2)

where H0(div,Ω) := {v ∈ L2(Ω) : divv ∈ L2(Ω),v · n = 0 on ∂Ω} with L2(Ω) := L2(Ω) × L2(Ω)
and n being the outward unit normal on ∂Ω. Note, that the solution u∗ of (1.1) and a solution
p∗ of (1.2) are related by

(1.3) u∗ = divp∗ + g,

see [31]. The smooth objective and the box-constraint seem more amenable to a domain decompo-
sition than the structure of (1.1). In fact, in [34] nonoverlapping domain decomposition methods
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for the problem in (1.2), where instead of |p(x)|`2 ≤ α the constraint |p(x)|`∞ ≤ α is considered,
are introduced and shown to converge to a minimizer of the global problem in a discrete setting.
It is still an open problem to show such a convergence result in an infinite dimensional setting.

Based on the nonoverlapping domain decomposition strategy in [34] for the predual problem
(1.2) in [45] a nonoverlapping algorithm for a discretized version of the primal problem (1.1) is
constructed. Thereby the following strategy is pursued: The domain decomposition method in [34]
is constituted by its subdomain problems. Then the dual problems of these subdomain problems
are computed, yielding a sequence of nonoverlapping subdomain problems of the primal problem.
Due to the predualization and dualization, the finally constituted domain decomposition method
of the discretized primal problem looks different than the splitting strategies presented in [27, 32].
Using the connection between the primal subdomain problems and their predual counterparts
allows in [45] to show analytically the convergence of the nonoverlapping domain deomposition
methods to the minimizer of the global problem in a discrete setting.

While convergence to a solution of the global problem (1.1) or (1.2) for nonoverlapping domain
decomposition methods in an infinite dimensional setting has not yet been theoretically proven,
there exist overlapping domain decomposition methods for the predual problem (1.2) with such
desirable convergence properties. In particular, in [13] overlapping domain decomposition methods
for the predual problem (1.2) are introduced and the convergence to the true minimizer of the
global problem is shown analytically in an infinite dimensional setting, together with a convergence
rate. We note, that this results cannot be (directly) extended to the nonoverlapping case. This is
due to the fact, that the overlapping decomposition in [13] is determined by a partition of unity
function, whose partitions have to be sufficiently smooth. This essential smoothness property is
unfortunately lost for a nonoverlapping splitting.

We summarize, that domain decomposition algorithms with a theoretical guarantee to con-
vergence to the minimizer of the global problem are till now given for (i) the discrete predual
problem with a nonoverlapping decomposition [34], (ii) the continuous predual problem with an
overlapping decomposition [13], and (iii) the discrete primal problem with a nonoverlapping de-
composition [45].

In this paper, we continue growing this list by presenting convergent sequential and parallel
overlapping domain decomposition methods for the primal problem (1.1). In particular we prove
their convergence to the solution of (1.1) in an infinite dimensional setting. Thereby we follow
basically the idea of [45]. That is, we consider the overlapping domain decomposition method
in [13], which is stated in a continuous setting, and compute from its subdomain problems their
respective dual problems. This yields an overlapping domain decomposition method for the prob-
lem in (1.1). Again, due to the connection of the subdomain problems to the predual subdomain
problems of the method in [13], we are able to prove that our newly proposed methods converge
to a minimizer of the underlying global problem. Although the proofs presented in this paper are
motivated by the ones in [45], our analysis differs significantly from the one in [45]. This is due to
the following reasons: Firstly, we consider overlapping domain decomposition methods, while in
[45] nonoverlapping methods are considered. In particular, our subdomain problems are very dif-
ferent to the ones in [45], asking for different subdomain solvers as well as a different convergence
analysis. Secondly, while the analysis in [45] is carried out in a discrete setting, our analysis as
well as our methods are presented in a continuous setting, which generates additional difficulties
in proving convergence. For example, while in a discrete setting bounded sequences have strongly
converging subsequences, a bounded sequence in L2 has (only) weakly converging subsequences.
Moreover, the gradient of a bounded function is in general not bounded in L2, while in a discrete
setting the gradient of any bounded function is bounded again.

We found that in a discrete setting our proposed overlapping strategy allows for overlapping
regions of size zero, yielding a nonoverlapping decomposition. In particular, in this limit case our
proposed splitting strategies become the methods in [45], see Remark 3.1 below. Hence, in this
sense our algorithms generalize the ones in [45].

The rest of the paper is organized as follows: In Section 2 we derive and present the proposed
alternating and parallel domain decomposition methods. Their convergence to a minimizer of
the global problem (1.1) is shown analytically. In Section 3 we describe two different approaches
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on how to solve the subspace minimization problems. In particular, one approach first restricts
the subspace problems to the subdomain and then discretizes the problem accordingly, while the
other approach first discretizes the subproblems and than restricts it to the respective subdomain.
Numerical experiments for the alternating and parallel domain decomposition methods are shown
in Section 4, demonstrating the efficiency of the methods.

2. Overlapping Domain Decomposition Algorithms. In this section we present and
analyze the proposed overlapping domain decomposition algorithms. Their derivation is based on
the splitting strategy in [13]. However we start by fixing some notations.

2.1. Basic terminology. For a Banach space V we denote be V ′ its topological dual and
〈·, ·〉V ′×V describes the bilinear canonical pairing over V ′ × V . The norm of a Banach space V
is written as ‖ · ‖V . For any p = (p1, p2) ∈ Ls(Ω), 1 ≤ s ≤ ∞, we define the norm ‖p‖Ls(Ω) =

(‖p1‖2Ls(Ω) + ‖p2‖2Ls(Ω))
1/2. By (·, ·) we denote the standard inner product in L2(Ω).

For ease of notation, in the sequel for any sequence (vn)n∈N we write (vn)n instead. A convex
functional F : V → R:= R ∪ {+∞} is called proper, if {v ∈ V : F(v) 6= +∞} 6= ∅ and F(v) > −∞
for all v ∈ V . A functional F : V → R is called (weakly) lower semicontinuous (l.s.c.), if for every
(weakly) convergent sequence (vn)n ⊂ V with limit v ∈ V we have

lim inf
n→∞

F(vn) ≥ F(v).

Note, that in infinite dimensional spaces, weak l.s.c. is a stronger requirement than (strong)
l.s.c. However, a convex and (strongly) l.s.c. function is weakly l.s.c. thanks to Mazur’s lemma.
Further, weak l.s.c. and (strong) l.s.c. coincide in finite dimensional spaces [5]. In the context
of convergence we often use the symbols “→” and “⇀” to indicate strong and weak convergence
respectively.

For a convex functional F : V → R we define the subdifferential of F at v ∈ V as the set
valued function

∂F(v) :=

{
∅ if F(v) =∞,
{v∗ ∈ V ′ : 〈v∗, u− v〉V ′×V + F(v) ≤ F(u) ∀u ∈ V } otherwise.

It is clear from this definition, that 0 ∈ ∂F(v) if and only if v is a minimizer of F .
The conjugate function (or Legendre transform) of a convex function F : V → R is defined as

F∗ : V ′ → R with

F∗(v∗) = sup
v∈V
{〈v∗, v〉V ′×V −F(v)}.

From this definition we see that F∗ is the pointwise supremum of continuous affine functions and
thus, according to [22, Proposition 3.1, p 14], convex, lower semicontinuous, and proper.

A functional F : V → R is said to be coercive (in V ), if for every sequence (vn)n ⊂ V
with ‖vn‖V → ∞, we have F(vn) → ∞. Let V,W be two Banach spaces, then for any operator
Λ : V →W we define by Λ∗ : W ′ → V ′ its adjoint.

In the sequel we will often use C(Ω), the space of continuous functions in Ω, C0(Ω,R2),
the space of R2-valued continuous functions with compact support in Ω, and D(Ω), the space of
infinitely differentiable functions with compact support in Ω. By H1(Ω) we denote the Sobolev
space W 1,2(Ω), i.e., the space of functions in L2(Ω), whose first weak derivatives are again in
L2(Ω).

2.2. Preliminaries. For ease of presentation, and in order to avoid unnecessary technicali-
ties, we limit the derivation of our proposed domain decomposition algorithms to a splitting into
2 subdomains, by noting, that the generalization to multiple domains comes quite natural, see
Section 2.5. Hence, we are considering an overlapping decomposition of the image domain Ω into
2 subdomains Ω1 and Ω2, such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 6= ∅. In order to compute a
minimizer of (1.1) with respect to such a splitting, in [13] based on the predual formulation (1.2)
the algorithm shown in Algorithm 2.1 is proposed.
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Algorithm 2.1 Alternating predual version from [13]

Initialize: p0 ∈ H0(div,Ω) and α̂ ∈ (0, 1]
for n = 0, 1, 2, . . . do
q̂n1 ∈ arg min{ 1

2 ||div(v + θ2p
n) + g||2L2(Ω) : v ∈ H0(div,Ω), |v(x)|`2 ≤ αθ1(x) f.a.a. x ∈ Ω}

qn1 = (1− α̂)θ1p
n + α̂q̂n1

q̂n2 ∈ arg min{ 1
2 ||div(v + qn1 ) + g||2L2(Ω) : v ∈ H0(div,Ω), |v(x)|`2 ≤ αθ2(x) f.a.a. x ∈ Ω}

qn2 = (1− α̂)θ2p
n + α̂q̂n2

pn+1 = (1− α̂)pn + α̂(q̂n1 + q̂n2 )
end for

In Algorithm 2.1 (θi)i=1,2 denotes a partition of unity function with the properties
(a) θ1 + θ2 ≡ 1 and θi ≥ 0 a.e. on Ω,
(b) supp θi ⊂ Ωi,
(c) θi ∈ H1(Ω), ‖∇θi‖L∞(Ω) ≤ c0,
for i = 1, 2, where c0 > 0 is a constant depending on the overlapping-size; see [13]. Based on the
relation (1.3) in [13] it is shown, that Algorithm 2.1 generates a sequence (pn)n such that (un)n,
where un = divpn + g, converges to a minimizer of (1.1).

For deriving our algorithms, following the idea of [45], we calculate the dual problems of
the subdomain problems of Algorithm 2.1. The subdomain problems in Algorithm 2.1 may be
rewritten as

(2.1) arg min

{
1

2
|| divv + f ||2L2(Ω) : v ∈ H0(div,Ω), |v(x)|`2 ≤ λ(x) f.a.a. x ∈ Ω

}
where f = div θ2p

n + g, λ = αθ1 in Ω1 and f = divqn1 + g, λ = αθ2 in Ω2 for any n ≥ 0. Note
that, since f ∈ L2(Ω) in both situations and λ : Ω → R+

0 is a bounded function, the existence of
a minimizer of (2.1) is ensured [36, Proposition 3.2 (b)]. If λ ∈ C(Ω) and λ(x) > 0 for all x ∈ Ω,
then a dual problem of (2.1) is given by

(2.2) arg min
u∈L2(Ω)

{
J̃(u) :=

1

2
‖u− f‖2L2(Ω) +

∫
Ω

λ|Du|
}
,

and has a unique solution, see [36, 37]. Here and in the sequel, the expression
∫

Ω
λ|Du| describes

the integral of λ on Ω with respect to the measure |Du|, where Du is the distributional gradient
of u, see [36] for more details. In this situation, thanks to [31, 36], we have the following relation
between (2.1) and (2.2):

Lemma 2.1. Let f ∈ L2(Ω) be given and λ : Ω → R+ with λ ∈ C(Ω) (i.e., λ is a positive
continuous bounded function). Then u∗ is a minimizer of (2.2) if and only if there exists a
p∗ ∈ H0(div,Ω) such that

(i) divp∗ + f = u∗ and
(ii) p∗ ∈ arg minp∈K

1
2‖divp + f‖2L2(Ω) where K = K(Ω) := {p ∈ H0(div,Ω): |p(x)|`2 ≤

λ(x) f.a.a. x ∈ Ω}.
Further, p∗ ∈ arg minp∈K

1
2‖divp + f‖2L2(Ω) if and only if

〈(− div)∗(divp∗ + f),p− p∗〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p ∈ K

and p∗ ∈ K.

In our case λ is not necessarily positive, i.e., λ : Ω→ R+
0 , since it is in (2.2) the product of the

regularization parameter α and a partition of unity function, i.e., λ = αθi for i ∈ {1, 2}. This more
general case is not covered in [36]. In particular, while in [36] the existence of minimizers of (2.1)
with nonnegative, continuous and bounded λ is shown, no attention is given to problem (2.2) with
such functions λ. Therefore, we show next the existence of a minimizer for (2.2) with λ : Ω→ R+

0

being continuous, i.e., λ is nonnegative, continuous and bounded. In the sequel we assume, that
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supp(λ) ⊆ Ω and Ω0 := Ω\ supp(λ) is then open. That is, if supp(λ) = Ω, then Ω0 = ∅, otherwise,
i.e., supp(λ) ( Ω, then Ω0 6= ∅. Since Ω0 = int(Ω0), it follows that if q ∈ C1

0 (Ω,R2) and constant
in Ω0, i.e., q(x) = c ∈ R2 f.a.a. x ∈ Ω0, then divq = 0 a.e. on Ω0.

Lemma 2.2. Let u ∈ L2(Ω), λ : Ω→ R+
0 , λ ∈ H1(Ω)∩C(Ω), ‖∇λ‖L∞(Ω) <∞, and supp(λ) ⊆

Ω, then

sup
p∈K

(u,−divp) =

∫
Ω

λ|Du| =
∫

supp(λ)

λ|Du|.

Proof. We get∫
supp(λ)

λ|Du| =
∫

Ω\Ω0

λ|Du| = sup
p∈K(1,C0(Ω\Ω0,R2))

〈λDu,p〉C0(Ω\Ω0,R2)′×C0(Ω\Ω0,R2)

= sup
p∈K(1,C0(Ω,R2))

〈λDu,p〉C0(Ω,R2)′×C0(Ω,R2) =

∫
Ω

λ|Du|,

since λ ∈ C(Ω) and λ(x) = 0 f.a.a. x ∈ Ω0, where K(λ,C0(Ω,R2)) := {p ∈ C0(Ω,R2) : |p(x)|`2 ≤
λ(x) f.a.a. x ∈ Ω}. Since K(1,D(Ω)2) is dense in K(1, C0(Ω,R2)) in the sense of C0(Ω,R2), and
K(1,D(Ω)2) is dense in K(1, H0(div,Ω)) in the sense of H0(div,Ω) [35], we observe∫

Ω

λ|Du| = sup
p∈K(1,C0(Ω,R2))

〈λDu,p〉C0(Ω,R2)′×C0(Ω,R2)

= sup
p∈K(1,D(Ω)2)

〈λDu,p〉C0(Ω,R2)′×C0(Ω,R2)

= sup
p∈K(1,D(Ω)2)

〈Du, λp〉C0(Ω,R2)′×C0(Ω,R2) = sup
p∈K(1,D(Ω)2)

(u,− div λp)

= sup
p∈K(1,H0(div,Ω))

(u,−div λp) ≤ sup
p∈K

(u,−divp),

(2.3)

where we note that λp ∈ H0(div,Ω) for any p ∈ H0(div,Ω), due to the assumptions on λ. On the
other hand, for any ε > 0, using the same argument as above together with (λ+ ε)p ∈ H0(div,Ω)
for any p ∈ H0(div,Ω), we obtain

∫
Ω

(λ + ε)|Du| = supp∈Kε(u,−div λp) ≥ supp∈K(u,−divp),
where Kε := {p ∈ H0(div,Ω) : |p| ≤ λ + ε} and the equality follows by [36]. Letting ε tend to 0,
shows

∫
Ω
λ|Du| ≥ supp∈K(u,−divp). This together with (2.3) proves the assertion.

Now we prove the existence and uniqueness of the minimizer of (2.2).

Proposition 2.3. If λ is defined as in Lemma 2.2, then (2.2) admits a unique solution.

Proof. The functional J̃ is obviously bounded from below by 0 and there exists a v ∈ L2(Ω)
such that J̃(v) ∈ R. Further, J̃ is coercive in L2(Ω), since ‖u− f‖2L2(Ω) ≤ J̃(u) for all u ∈ L2(Ω).

The weak lower semicontinuity of J̃ follows by the continuity of the map u →
∫

Ω
−divp u dx,

where p ∈ K. Then the direct method in the calculus of variations yields the existence of a
minimizer.

The uniqueness of the minimizer follows by the strict convexity of J̃ .

Note, that a minimizer of J̃ not necessarily is an element of BV (Ω). This is easily seen, since a
minimizer is allowed to have infinite variation in Ω0. In order to show the duality relation between
(2.1) and (2.2) for λ ≥ 0, we recall the Fenchel duality theorem; see, e.g., [22] for more details.

Theorem 2.4 (Fenchel duality theorem). Let V and W be two Banach spaces with topological
duals V ′ and W ′, respectively, and Λ : V → W a bounded linear operator with adjoint Λ∗ ∈
L(W ′, V ′). Further let F : V → R, G : W → R be convex, lower semicontinuous, and proper
functionals. Assume there exists q0 ∈ V such that F(q0) < ∞, G(Λq0) < ∞ and G is continuous
at Λq0. Then we have

(2.4) inf
q∈V
F(q) + G(Λq) = sup

v∈W ′
−F∗(Λ∗v)− G∗(−v)
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and the problem on the right hand side of (2.4) admits a solution v̄. Moreover, v̄ and q̄ are
solutions of the two optimization problems in (2.4), respectively, if and only if

Λ∗v̄ ∈ ∂F(q̄),

−v̄ ∈ ∂G(Λq̄).
(2.5)

Now we are able to state our duality result.

Theorem 2.5. Let λ be defined as in Lemma 2.2. Then a Fenchel dual of (2.1) is given by
(2.2). Moreover, let u∗ be a minimizer of (2.2) and p∗ a minimizer of (2.1) then

(2.6) u∗ = divp∗ + f and 〈(−div)∗u∗,p− p∗〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p ∈ K.

Proof. We apply the Fenchel duality result (see Theorem 2.4) with V = H0(div,Ω), W =
L2(Ω), Λ = −div, F : V → R given by F(p) = IK(p), and G : L2(Ω) → R given by G(v) =
1
2‖v − f‖

2
L2(Ω), where

IK(p) =

{
0 if p ∈ K
∞ otherwise

.

The convex conjugate G∗ : L2(Ω) → R is then G∗(v) = 1
2‖v + f‖2L2(Ω) −

1
2‖f‖L2(Ω), cf. [31], and

the convex conjugate F∗ : V ′ → R is given by F∗(q) = supp∈V 〈q,p〉V ′×V −F(p). Thus

F∗(Λ∗v) = sup
p∈K

(v,−divp) =

∫
Ω

λ|Dv|,

where we used Lemma 2.2. From (2.5) we find (2.6).

In order that (2.2) is well defined and that convergence to the true minimizer of the proposed
domain decomposition algorithms is guaranteed, a partition of unity function needs to have the
following properties

(a’) θ1 + θ2 ≡ 1 and θi ≥ 0 a.e. on Ω for i = 1, 2,(2.7)

(b’) supp(θi) ⊂ Ωi for i = 1, 2,(2.8)

(c’) θi ∈ H1(Ω) ∩ C(Ω) and ‖∇θi‖L∞(Ω) <∞ for i = 1, 2.(2.9)

In the sequel we will only use a partition of unity function with the properties (a’), (b’), and (c’),
and denote it by (θi)i.

Remark 2.6. The theory presented in this paper can be generalized to other types of total
variation, i.e., ∫

Ω

|Du|r = sup

{∫
Ω

udivp dx : p ∈ C1
0 (Ω,R2), |p|`r ≤ 1 a.e. in Ω

}
with 1 ≤ r < +∞, leading to a similar analysis and similar results; cf. Remark 2.16 below. For
instance, the predual problem of (2.2) with

∫
Ω
|Du|r is given by

arg min

{
1

2
|| divv + f ||2L2(Ω) : v ∈ H0(div,Ω), |v(x)|`r∗ ≤ λ(x) f.a.a. x ∈ Ω

}
,

where 1
r + 1

r∗ = 1.

2.3. Alternating algorithm. Based on the above considerations we are now able to present
the proposed alternating domain decomposition algorithm, stated in Algorithm 2.2.

Lemma 2.7. The sequence (un)n as well as (uni )n, i = 1, 2, generated by Algorithm 2.2 are
bounded in L2(Ω). Moreover, we have

(2.10) ‖un2‖L2(Ω) ≥ ‖un+1
1 ‖L2(Ω) ≥ ‖un+1

2 ‖L2(Ω) ≥ ‖un+2
1 ‖L2(Ω) for all n ≥ 1.
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Algorithm 2.2 Alternating Version

Initialize: u0
2(= 0) ∈ L2(Ω), f0

2 = 0 ∈ L2(Ω)
for n = 0, 1, 2, . . . do
fn+1

1 = un2 − fn2 + g
un+1

1 = arg minu1∈L2(Ω)
1
2‖u1 − fn+1

1 ‖2L2(Ω) + α
∫

Ω
θ1|Du1|

fn+1
2 = un+1

1 − fn+1
1 + g

un+1
2 = arg minu2∈L2(Ω)

1
2‖u2 − fn+1

2 ‖2L2(Ω) + α
∫

Ω
θ2|Du2|

un+1 = g − fn+1
1 − fn+1

2 + un+1
1 + un+1

2 (= un+1
2 )

end for

Proof. By the relation to the predual problem for n ≥ 1 we have for i = 1, 2, that there exist
pni ∈ Ki := {p ∈ H0(div,Ω) : |p|`2 ≤ αθi a.e. on Ω} such that

uni = divpni + fni and 〈(−div)∗uni ,pi − pni 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀pi ∈ Ki.(2.11)

This means that for all n ≥ 1 and for i = 1, 2 such pni ∈ Ki solves

arg min
p∈Ki

1

2
‖ divp + fni ‖2L2(Ω).

Since fn+1
1 = un2 − fn2 + g = divpn2 + g and fn+1

2 = un+1
1 − fn+1

1 + g = divpn+1
1 + g we have

pn+1
1 ∈ arg min

p1∈K1

1

2
‖ divp1 + divpn2 + g‖2L2(Ω) and pn+1

2 ∈ arg min
p2∈K2

1

2
‖ divp2 + divpn+1

1 + g‖2L2(Ω)

and hence
(2.12)
1

2
‖ divpn1 + divpn2 + g‖2L2(Ω) ≥

1

2
‖ divpn+1

1 + divpn2 + g‖2L2(Ω) ≥
1

2
‖divpn+1

1 + divpn+1
2 + g‖2L2(Ω)

for all n ≥ 1. Set pn := pn1 + pn2 and p̃n+1 := pn+1
1 + pn2 for all n ≥ 1, then (2.12) yields

1

2
‖ divp1 + g‖2L2(Ω) ≥

1

2
‖ div p̃n+1 + g‖2L2(Ω) ≥

1

2
‖ divpn+1 + g‖2L2(Ω) ∀n ≥ 1.

Note that p1 ∈ H0(div,Ω) and hence ‖ divp1 + g‖2L2(Ω) <∞. Then, by monotonicity we obtain

‖ div p̃n+1 + g‖L2(Ω) <∞ and ‖ divpn + g‖L2(Ω) <∞

for all n ≥ 1. Moreover,

‖pni ‖2L2(Ω) =

∫
Ω

|p1,n
i (x)|2dx+

∫
Ω

|p2,n
i (x)|2dx ≤ α2

∫
Ω

|θi(x)|2dx <∞,

where pni = (p1,n
i , p2,n

i ), and hence

‖pn‖L2(Ω) ≤ ‖pn1‖L2(Ω) + ‖pn2‖L2(Ω) <∞ and ‖p̃n+1‖L2(Ω) <∞

for all n ≥ 1, which shows the boundedness of (pn)n and (p̃n+1)n in H0(div,Ω). Set fn+1 :=
fn+1

1 + fn+1
2 = div p̃n+1 + 2g and ũn := un1 + un2 = divpn + fn for all n ≥ 1, then we have

that (fn)n and (ũn)n are bounded in L2(Ω). Consequently, the sequences (un)n and (un2 )n, see
Algorithm 2.2, are bounded in L2(Ω). Moreover, we get the boundedness of (un1 )n, which is easily
seen from the definition of ũn.

Due to the relation (2.11) we obtain from the monotonicity (2.12) that

‖un1 − fn1 + un2 − fn2 + g‖2L2(Ω) ≥ ‖u
n+1
1 − fn+1

1 + un2 − fn2 + g‖2L2(Ω)

≥ ‖un+1
1 − fn+1

1 + un+1
2 − fn+1

2 + g‖2L2(Ω)

for all n ≥ 1. Since we have un2 − fn2 − fn+1
1 + g = 0 and un1 − fn2 − fn1 + g = 0 for all n ≥ 1, see

Algorithm 2.2, the latter inequalities yield (2.10).
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Since un = un2 for all n ≥ 1, the previous lemma shows, that (un)n possesses weakly converging
subsequences. Moreover, from the monotonicity in Lemma 2.7 we even get that the whole sequence
(‖un‖L2(Ω))n converges monotonically to some limit. Note, that ‖un‖L2(Ω) = ‖un+1‖L2(Ω) does
not imply un = un+1. Now, we are wondering if the weak limit of such a subsequence indeed
solves the global minimization problem (1.1). In order to argue that, we need the boundedness of
(fni )n in L2(Ω). By Algorithm 2.2 we have

fn1 =

n−1∑
k=1

(uk2 − uk1) + u0
2 − f0

2 + g, fn2 = un1 +

n−1∑
k=1

(uk1 − uk2)− u0
2 + f0

2 =

n−1∑
k=1

(uk+1
1 − uk2) + u1

1

for all n ≥ 1. Hence, if there exists a constant C > 0, which is independent of n such that∑n−1
k=1 ‖uk2 − uk1‖L2(Ω) ≤ C < ∞ for any n ≥ 1 (or in other words, if ‖uk2 − uk1‖L2(Ω) converges to

zero fast enough for k →∞, for instance, ‖uk2−uk1‖L2(Ω) ≤ 1
kγ with γ > 1), then (fni )n is bounded

in L2(Ω). Unfortunately, in the sequel we are only able to show that if (fni )n is bounded, then
limn→∞ ‖un2 − un1‖L2(Ω) = 0.

Theorem 2.8. If there is an i ∈ {1, 2} such that (fni )n is bounded in L2(Ω), then Algorithm
2.2 generates a sequence (un)n which converges strongly in L2(Ω) to the unique minimizer of (1.1).

Proof. We use the notation of the previous proof.
Since (fni )n is bounded in L2(Ω) for one i ∈ {1, 2}, we get by the proof of Lemma 2.7 and

Algorithm 2.2 that also (fnic), i
c ∈ {1, 2} \ {i} is bounded. Then (2.11) implies that (divpn1 )n and

(divpn2 )n are bounded in L2(Ω) and hence (pni )n is bounded in H0(div,Ω).
By the boundedness of (pn2 )n there is a subsequence (pnk2 )k which converges weakly to a limit

denoted by p∞2 . Since (pnk−1
2 )k is bounded as well, there exists a subsequence (p

nkj−1

2 )j with

weak limit p̃∞2 . Further (p
nkj
1 )j is bounded and has a subsequence (p

nkjl
1 ) which converges weakly

to p∞1 . Thus, from

1

2
‖ divpn−1

1 +divpn−1
2 +g‖2L2(Ω) ≥

1

2
‖divpn1 +divpn−1

2 +g‖2L2(Ω) ≥
1

2
‖ divpn1 +divpn2 +g‖2L2(Ω) ≥ 0,

for all n ≥ 2, we get that

1

2
‖ divp∞1 + divp∞2 + g‖2L2(Ω) =

1

2
‖ divp∞1 + div p̃∞2 + g‖2L2(Ω).

By the optimality p∞2 ∈ arg minp2∈K2

1
2‖divp∞1 + divp2 + g‖2L2(Ω) and the strict convexity of

‖ · ‖2L2(Ω) we obtain

(2.13) div p̃∞ = divp∞,

where p∞ = p∞1 + p∞2 and p̃∞ = p∞1 + p̃∞2 .
We show now that (un)n has a weak accumulation point minimizing (1.1). A function u∗ ∈

L2(Ω) solves (1.1) if and only if there exists p∗ ∈ H0(div,Ω) with |p∗(x)|`2 ≤ α f.a.a. x ∈ Ω such
that

(i) divp∗ + g = u∗ and
(ii) 〈(−div)∗(divp∗+ g),p−p∗〉H0(div,Ω)′×H0(div,Ω) ≤ 0 for all p ∈ H0(div,Ω) with |p(x)|`2 ≤ α

f.a.a. x ∈ Ω.
By the equality in (2.11) we have that

un1 + un2 = divpn1 + divpn2 + fn1 + fn2 ,

and hence

un = un1 + un2 − fn1 − fn2 + g = g + divpn
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for all n ≥ 1. Since all occurring sequences are bounded we are able to take suitable subsequences
with weak limits u∞ and p∞ and obtain

(2.14) u∞ = g + divp∞.

By the inequality in (2.11) for n ≥ 2 we have that

〈(−div)∗(divpn1 + fn1 ),p1 − pn1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(− div)∗(divpn2 + fn2 ),p2 − pn2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2,

which is equivalent to

〈(− div)∗(divpn1 + divpn−1
2 + g),p1 − pn1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(− div)∗(divpn2 + divpn1 + g),p2 − pn2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2.

Since all quantities are bounded, we take suitable subsequences nk, such that pnki ⇀ p∞i for
i = {1, 2} and p̃nk ⇀ p̃∞, and we get

〈(−div)∗(div p̃∞ + g),p1 − p∞1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(−div)∗(divp∞ + g),p2 − p∞2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2.

By (2.13) and summing up the latter two inequalities yields

〈(−div)∗(divp∞ + g),p− p∞〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p := p1 + p2 ∈ K1 +K2.

Note, that |p|`2 = |p1 + p2|`2 ≤ |p1|`2 + |p2|`2 ≤ α a.e. on Ω. On the contrary for any p ∈
H0(div,Ω) with |p|`2 ≤ α we set pi = θip for i = {1, 2}, which implies that |pi|`2 ≤ αθi and
pi ∈ Ki, thanks to (2.7)–(2.9). Hence we obtain

〈(−div)∗(divp∞ + g),p− p∞〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p ∈ H0(div,Ω) with |p|`2 ≤ α a.e. on Ω.

This together with (2.14) and the fact that |p∞|`2 ≤ α a.e. on Ω shows that u∞ is a minimizer
of (1.1). Since any converging subsequence of (un)n converges weakly in L2(Ω) to the unique
minimizer of (1.1), there is only one accumulation point and hence un ⇀ u∞.

From the monotonicity (2.10) we get that ‖un‖L2(Ω) → ‖u∞‖L2(Ω) monotonically. This
together with the weak convergence un ⇀ u∞ yields the assertion, since ‖un‖2L2(Ω) = ‖un −
u∞‖2L2(Ω) + 2(un − u∞, u∞) + ‖u∞‖2L2(Ω).

Remark 2.9. The above proof relies on the boundedness of (pni )n in H0(div,Ω), which is
attained if (fni )n is bounded in L2(Ω) for i = {1, 2}. However, in a finite dimensional setting,
which is for example the situation when the considered problem is discretized, the boundedness
of (pni )n implies the boundedness of (divpni )n for i = 1, 2, which in turn yields the boundedness
of (fni )n. Hence, in this situation the boundedness assumption on (fni )n always holds and thus
can be dropped in Theorem 2.8. Consequently, in a discrete setting by the above considerations
we can get a vague idea of the convergence order. In particular, there exists a γ > 1 such that
‖un1 − un2‖X ≤ 1

nγ for all n ≥ 1, where ‖ · ‖X defines an appropriate discrete norm.

We emphasize, Theorem 2.8 shows, that the whole sequence (un)n generated by Algorithm 2.2
converges strongly to a minimizer of the global problem (1.1), thanks to the monotonicity property
in Lemma 2.7. This monotonicity property also guarantees, that (un1 )n converges strongly to the
minimizer of (1.1), which we show next.

Corollary 2.10. Suppose the assumption of Theorem 2.8 holds. Then (un1 )n generated by
Algorithm 2.2 converges strongly in L2(Ω) to the minimizer of (1.1).

Proof. Since (un1 )n is bounded in L2(Ω) and un1 = div p̃n + g for all n ≥ 2, there exists a
subsequence such that unk1 ⇀ u∞1 := div p̃∞ + g = divp∞ + g = u∞ (in L2(Ω)), where we used
(2.13). Since this is true for any convergent subsequence, we get un1 ⇀ u∞ for n→∞. The strong
convergence follows from the monotonicity (2.10) together with the weak convergence.
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Corollary 2.11. Suppose the assumption of Theorem 2.8 holds. Then (fni )n, i = 1, 2, gen-
erated by Algorithm 2.2 converges strongly in L2(Ω).

Proof. By Algorithm 2.2 we have for all n ≥ 0,

fn+1
1 = un2 − fn2 + g = un2 − un1 + fn1 , fn+1

2 = un+1
1 − fn+1

1 + g = un+1
1 − un2 + fn2

and hence

fn+1
1 − fn1 = un2 − un1 , fn+1

2 − fn2 = un+1
1 − un2 .

This together with Corollary 2.10 and the boundedness of (fni )n, i = 1, 2, implies the assertion.

2.4. Parallel algorithm. The parallel version of the domain decomposition algorithm in
Algorithm 2.2 is presented in Algorithm 2.3. We state a similar convergence result as for the
sequential algorithm.

Algorithm 2.3 Parallel Version

Initialize: v0
i = 0 for i = 1, 2

for n = 0, 1, 2, . . . do
fn+1

1 = vn2 + g
fn+1

2 = vn1 + g
un+1

1 = arg minu1∈L2(Ω)
1
2‖u1 − fn+1

1 ‖2L2(Ω) + α
∫

Ω
θ1|Du1|

un+1
2 = arg minu2∈L2(Ω)

1
2‖u2 − fn+1

2 ‖2L2(Ω) + α
∫

Ω
θ2|Du2|

vn+1
1 =

vn1 +un+1
1 −fn+1

1

2

vn+1
2 =

vn2 +un+1
2 −fn+1

2

2

un+1 = g + vn+1
1 + vn+1

2 (=
un+1

1 +un+1
2

2 )
end for

Theorem 2.12. Assume that (fni )n is bounded in L2(Ω) for i = 1, 2. Then Algorithm 2.3
generates a sequence (un)n, which converges strongly in L2(Ω) to the minimizer of (1.1).

Proof. For the sake of clarity we present the proof in four steps.
Step 1: One shows by induction, as in [45, Proof of Lemma 3.4], that for i = 1, 2 there exist

ṽni ∈ Ki such that div ṽni = vni for all n ≥ 0.
Step 2: Now let us show that (pn+1

i )n is bounded in H0(div,Ω). From the boundedness of
(fni )n we directly get that (vni )n is bounded. We note that for all n ≥ 0

pn+1
i ∈ arg min

pi∈Ki
‖ divpi + fn+1

i ‖2L2(Ω),

where fn+1
i is given by Algorithm 2.3. Using this and the triangle inequality, we obtain

‖vn+1
1 + vn+1

2 + g‖L2(Ω) =

∥∥∥∥vn1 + divpn+1
1

2
+
vn2 + divpn+1

2

2
+ g

∥∥∥∥
L2(Ω)

≤ 1

2

(
‖ divpn+1

1 + vn2 + g‖L2(Ω) + ‖vn1 + divpn+1
2 + g‖L2(Ω)

)
≤ 1

2

(
‖ div ṽn1 + vn2 + g‖L2(Ω) + ‖vn1 + div ṽn2 + g‖L2(Ω)

)
= ‖vn1 + vn2 + g‖L2(Ω)

(2.15)

for all n ≥ 0. Similarly one gets

‖vn+1
1 + vn2 + g‖L2(Ω) =

∥∥∥∥vn1 + divpn+1
1

2
+ vn2 + g

∥∥∥∥
L2(Ω)

≤ 1

2

(
‖ divpn+1

1 + vn2 + g‖L2(Ω) + ‖vn1 + vn2 + g‖L2(Ω)

)
= ‖vn1 + vn2 + g‖L2(Ω)

(2.16)
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for all n ≥ 0. By the monotonicity in (2.15) we have that ‖vn1 + vn2 + g‖L2(Ω) ≤ ‖g‖L2(Ω). Thus

from (2.16) we obtain the boundedness in L2(Ω) for (divpn+1
1 )n, since

‖g‖L2(Ω) ≥ ‖vn1 +vn2 +g‖L2(Ω) ≥ ‖divpn+1
1 +vn2 +g‖L2(Ω) ≥ ‖divpn+1

1 ‖L2(Ω)−‖vn2 ‖L2(Ω)−‖g‖L2(Ω),

for all n ≥ 0. An analog argument yields the boundedness of (divpn+1
2 )n in L2(Ω).

Since pn+1
i ∈ Ki for all n ≥ 0, we get ‖pn+1

i ‖2L2(Ω) ≤ α2‖θi‖2L2(Ω) < ∞ and hence (pn+1
i )n is

bounded in H0(div,Ω).
Step 3: We show that weak accumulation points of (vni )n and (divpn+1

i )n coincide. Since
both sequences are bounded, there exist suitable subsequences such that (vnki )k and (divpnk+1

i )k
have weak limits v∞i and divp∞i , respectively. Since pnk+1

1 ∈ arg minp1∈K1
‖ divp1 +vnk2 +g‖2L2(Ω)

and pnk+1
2 ∈ arg minp2∈K2

‖ divp2 + vnk1 + g‖2L2(Ω) we get from (2.15)

‖ divpnk+1
1 + vnk2 + g‖2L2(Ω) ≤ ‖v

nk
1 + vnk2 + g‖2L2(Ω) and

‖ divpnk+1
2 + vnk1 + g‖2L2(Ω) ≤ ‖v

nk
1 + vnk2 + g‖2L2(Ω).

Passing in (2.15) for the suitable subsequence (nk)k to the limit, we obtain that

‖v∞1 + v∞2 + g‖2L2(Ω) − ‖ divp∞1 + v∞2 + g‖2L2(Ω) = 0 and

‖v∞1 + v∞2 + g‖2L2(Ω) − ‖ divp∞2 + v∞1 + g‖2L2(Ω) = 0.

By the strict convexity of ‖ · ‖2L2(Ω) and the optimiality of p∞i we get

v∞i = divp∞i

for i = 1, 2.
Step 4: We are left to show that the sequence (un)n generated by Algorithm 2.3 converges

to a solution of (1.1). We recall, that a function u∗ ∈ L2(Ω) solves (1.1) if and only if there exists
p∗ ∈ H0(div,Ω) with |p∗(x)|`2 ≤ α f.a.a. x ∈ Ω such that

(i) divp∗ + g = u∗ and
(ii) 〈(−div)∗(divp∗+ g),p−p∗〉H0(div,Ω)′×H0(div,Ω) ≤ 0 for all p ∈ H0(div,Ω) with |p(x)|`2 ≤ α

f.a.a. x ∈ Ω.
Since (vni )n is bounded in L2(Ω) we also have that (un)n is bounded in L2(Ω). For all n ≥ 1 we
have from step 1 that vni = div ṽni , where (ṽni )n is bounded in L2(Ω), because ṽni ∈ Ki. Setting
ṽn := ṽn1 + ṽn2 we can write

un+1 = g + div ṽn+1
1 + div ṽn+1

2 = g + div ṽn+1

for all n ≥ 1. Then let us take a suitable subsequence such that unk+1 ⇀ u∞ and pnk+1 ⇀ p∞

and passing to the limit yields

(2.17) u∞ = g + div ṽ∞.

By the inequality in (2.11) we have that

〈(−div)∗(divpn+1
1 + fn+1

1 ),p1 − pn+1
1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(−div)∗(divpn+1
2 + fn+1

2 ),p2 − pn+1
2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2

for all n ≥ 0, which is equivalent to

〈(−div)∗(divpn+1
1 + vn2 + g),p1 − pn+1

1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(−div)∗(divpn+1
2 + vn1 + g),p2 − pn+1

2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2.

Since all quantities are bounded, we take suitable subsequences nk such that pnk+1
i ⇀ p∞i for

i = {1, 2} and vnki ⇀ v∞i = divp∞i (see step 3) and we get

〈(−div)∗(divp∞ + g),p1 − p∞1 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p1 ∈ K1

〈(−div)∗(divp∞ + g),p2 − p∞2 〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p2 ∈ K2.
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Summing up the latter two inequalities yields

〈(−div)∗(divp∞ + g),p− p∞〉H0(div,Ω)′×H0(div,Ω) ≤ 0 ∀p := p1 + p2 ∈ K1 +K2,

which is, following the same arguments as in the proof of Theorem 2.8, equivalent to

〈(− div)∗(divp∞ + g),p− p∞〉H0(div,Ω)′×H0(div,Ω) ≤ 0

for all p ∈ H0(div,Ω) with |p|`2 ≤ α a.e. on Ω. This together with (2.17) and the fact that
|p∞|`2 ≤ α a.e. on Ω shows that u∞ is a minimizer of (1.1). By the uniqueness of the minimizer,
any convergent subsequence of (un)n converges to u∞ and hence un ⇀ u∞ for n→∞.

From (2.15) we directly obtain ‖un‖L2(Ω) ≥ ‖un+1‖L2(Ω). This together with the weak con-
vergence un ⇀ u∞ implies the strong convergence.

Remark 2.13. Alternatively to the boundedness assumption on (fni )n, i = 1, 2, in Theorem
2.12 we may assume that (vni )n, i = 1, 2, is bounded in L2(Ω) instead. This would obviously imply
the boundedness of (fni )n in L2(Ω). However, we note again that the boundedness assumption on
(fni )n, i = 1, 2, in Theorem 2.12 indeed holds in a finite dimensional setting, cf. Remark 2.9.

As for the sequential method, in the infinite dimensional case the boundedness of (fni )n in
L2(Ω) is only ensured if ‖un2 − un1‖L2(Ω) converges to 0 sufficiently fast (for n→∞).

Proposition 2.14. Let (uni )n, i = 1, 2 be generated by Algorithm 2.3. If there exists a con-
stant γ > 1 such that ‖un2 − un1‖L2(Ω) ≤ 1

nγ for any n ≥ 1, then (vni )n and (fni )n, i = 1, 2, are
bounded in L2(Ω).

Proof. By induction one shows that

vn1 =
1

4

n−1∑
i=1

(ui1 − ui2) +
1

2
un1 −

1

2
g and vn2 =

1

4

n−1∑
i=1

(ui2 − ui1) +
1

2
un2 −

1

2
g

for n ≥ 1. By the triangle inequality and the boundedness of (uni )n in L2(Ω), the assertion follows.

2.5. Multi-subdomain. The domain decomposition methods presented in Algorithm 2.2
and Algorithm 2.3 can be naturally extended to a multi-domain splitting. Let M ∈ N be the
number of overlapping subdomains and (θi)

M
i=1 a partition of unity with the properties

(a’)

M∑
i=1

θi ≡ 1 and θi ≥ 0 a.e. on Ω for i = 1, 2, . . . ,M,

(b’) supp(θi) ⊂ Ωi for i = 1, 2, . . . ,M,

(c’) θi ∈ H1(Ω) ∩ C(Ω) and ‖∇θi‖L∞(Ω) <∞ for i = 1, 2, . . . ,M.

The multi-subdomain versions of Algorithm 2.2 and Algorithm 2.3 are stated in Algorithm
2.4 and Algorithm 2.5, respectively.

Algorithm 2.4 Alternating Multi-subdomain Version

Initialize: u0
i (= 0) ∈ L2(Ω), f0

i = 0 ∈ L2(Ω), i = 1, ...,M
for n = 0, 1, 2, . . . do
for i = 1, . . . ,M do
fn+1
i =

∑
j>i(u

n
j − fnj ) +

∑
j<i(u

n+1
j − fn+1

j ) + g

un+1
i = arg minui∈L2(Ω)

1
2‖ui − f

n+1
1 ‖2L2(Ω) + α

∫
Ω
θi|Dui|

end for
un+1 = g +

∑M
i=1 u

n+1
i − fn+1

i (= un+1
M )

end for
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Algorithm 2.5 Parallel Multi-subdomain Version

Initialize: v0
i = 0 for i = 1, 2, ...,M

for n = 0, 1, 2, . . . do
fn+1
i =

∑
j 6=i v

n
j + g, i = 1, ...,M

un+1
i = arg minui∈L2(Ω)

1
2‖ui − f

n+1
i ‖2L2(Ω) + α

∫
Ω
θi|Dui|, i = 1, ...,M

vn+1
i =

(M−1)vni +un+1
i −fn+1

i

M , i = 1, ...,M

un+1 = g +
∑M
i=1 v

n+1
i (=

∑M
i=1 u

n+1
i

M )
end for

Similar to Lemma 2.7 and Theorem 2.12 we are able to prove that the sequence (un)n, gener-
ated by Algorithm 2.4 or Algorithm 2.5, is bounded in L2(Ω). Further, if (fni )n for i = 1, . . . ,M
is bounded in L2(Ω), then we can again show as in Theorem 2.8 and in Theorem 2.12 that (un)n
converges strongly in L2(Ω) to the minimizer of (1.1). We recall, that in a finite dimensional
setting, the boundedness of (fni )n is easily shown as above. In an infinite dimensional setting we
only obtain the following result:

Proposition 2.15. Assume that M ∈ N is a fixed number.
(a) Let (uni )n, i = 1, . . . ,M be generated by Algorithm 2.4. If there exists a constant γ > 1 such

that ‖un+1
i−1 −uni ‖L2(Ω) ≤ 1

nγ for any n ≥ 1, then (fni )n is bounded in L2(Ω) for i ∈ {1, . . . ,M},
where we use the convention that un+1

0 := unM .
(b) Let (uni )n, i = 1, . . . ,M be generated by Algorithm 2.5. If there exists a constant γ > 1 such

that ‖
M∑
j 6=i

(uni − unj )‖L2(Ω) ≤ 1
nγ for any n ≥ 1 and i ∈ {1, . . . ,M}, then (vni )n and (fni )n are

bounded in L2(Ω).

Proof. (a) By induction one shows that

fni =

n−1∑
`=1

(u`+1
i−1 − u

`
i) + u1

i−1, for i = 1, . . . ,M and n ≥ 1,

where u1
0 := g. The assertion follows then by the triangle inequality.

(b) Again by induction one shows that

vni =
1

M2

n−1∑
k=1

M∑
j 6=i

(uki − ukj ) +
1

M
uni −

1

M
g, for i = 1, . . . ,M and n ≥ 1.

Since (uni )n is bounded in L2(Ω), we obtain the assertion.

Moreover, we emphasize, that for the sequential version, see Algorithm 2.4, we obtain as in
Lemma 2.7 the monotonicity ‖un1‖L2(Ω) ≥ ‖un2‖L2(Ω) ≥ . . . ≥ ‖unM‖L2(Ω) ≥ ‖un+1

1 ‖L2(Ω) for n ≥ 1.
Consequently, for i ∈ {1, . . . ,M} the sequence (uni )n converges strongly to a minimizer of the
global problem.

Remark 2.16. In the same manner as presented above we may construct domain decomposition
methods for (1.1) with

∫
Ω
|Du|r for any 1 ≤ r < +∞. By using the equivalence of norms in finite

dimensions, in particular, that there exist positive constants Cr∗ , Cr∗ such that Cr∗ |v|`r∗ ≤ |v|`2 ≤
Cr∗ |v|`r∗ , where 1

r + 1
r∗ = 1, the convergence proofs follow the same lines as the proofs above.

Remark 2.17. Actually the proposed domain decomposition algorithms may be used to solve
the more general problem

(2.18) arg min
u∈L2(Ω)

1

2
‖Tu− g‖2L2(Ω) + α

∫
Ω

|Du|,
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where T : L2(Ω) → L2(Ω) is a bounded linear operator, not annihilating constant functions, in
order to guarantee existence of a minimizer of (2.18) [1].

Then, by using an operator splitting technique [16], a solution u∗ of (2.18) for any given
u0 ∈ L2(Ω) is obtained by iteratively solving

(2.19) uk+1 = arg min
u∈L2(Ω)

‖u− (uk +
1

γ
T ∗(g − Tuk))‖2L2(Ω) + α

∫
Ω

|Du|, for k ≥ 0,

where γ > ‖T‖2, see for example [17, 18]. Since the minimization problem in (2.19) is of the
form (1.1), i.e., a denoising type of problem, the proposed domain decomposition methods may
be applied to solve it.

3. Subspace minimization. Let us consider, for example, the subspace minimization with
respect to u1, i.e.,

(3.1) un+1
1 = arg min

u1∈L2(Ω)

1

2
‖u1 − fn+1

1 ‖2L2(Ω) + α

∫
Ω

θ1|Du1|.

We present two different approaches on how to compute the solution of (3.1) by solving a mini-
mization on Ω1 only. The first approach first discretizes (3.1) and then restricts the optimization
process to the subdomain Ω1, while the second approach restricts the minimization problem in an
infinite dimensional setting before discretization. These two approaches lead to nearly equal but
still different discrete subspace problems.

3.1. Discretize before restriction. We start by introducing a discretization of the sub-
problems constituted by the above introduced domain decomposition methods. Therefore, let
Ωh be a discrete rectangular image domain containing N1 × N2 pixels, N1, N2 ∈ N. We ap-
proximate functions u by discrete functions, denoted by uh. The considered function spaces are
X = RN1×N2 and Y = X × X. For uh ∈ X and ph = (ph,1, ph,2) ∈ Y we use the norms
‖uh‖X := (

∑
x∈Ωh |uh(x)|2)1/2 and ‖ph‖2Y := ‖ph,1‖2X + ‖ph,2‖2X . On Ωh the discrete gradient

∇hΩ : X → Y and the discrete divergence divhΩ : Y → X are defined in a standard way by forward

and backward differences such that divhΩ = −(∇hΩ)∗; see for example [34].
The discretized version of (3.1) using the above notation and definitions is written as

(3.2) uh,n+1
1 = arg min

uh1∈X

1

2
‖uh1 − f

h,n+1
1 ‖2X + α

∑
x∈Ωh

θh1 (x)|∇hΩuh1 (x)|`2 .

Let Ωh be decomposed into overlapping subdomains Ωhi , i = 1, . . . ,M such that Ωh =
⋃M
i=1 Ωhi

and for any i ∈ {1, . . . ,M} there exists at least one j ∈ {1, . . . ,M} \ {i} such that Ωhi ∩ Ωhj 6= ∅.
Due to this splitting, we define X1 := R|Ωh1 | and Y1 = X1 × X1, and accordingly the norms
‖uh‖X1

:= (
∑
x∈Ωh1

|uh(x)|2)1/2, ‖ph‖2Y1
:= ‖ph,1‖2X1

+ ‖ph,2‖2X1
for uh ∈ X1 and ph ∈ Y1. Let

uh ∈ X, then by uh|
Ωh1

we define the restriction of uh to Ωh1 and consequently uh|
Ωh1

∈ X1. Since

θh1 (x) = 0 for all x ∈ Ωh \ Ωh1 we can write the above minimization problem as

(3.3) uh,n+1
1 =


fh,n+1

1 in Ωh \ Ωh1
arg min
uh1 |

Ωh1

∈X1

1
2‖u

h
1 − f

h,n+1
1 ‖2X1

+ α
∑
x∈Ωh1

θh1 (x)|∇hΩuh1 (x)|`2 in Ωh1 ,

where uh1 ∈ X is such that uh1 (x) = fh,n+1
1 (x) for x ∈ Ωh \ Ωh1 . Hence, in order to obtain uh,n+1

1

only a minimization problem in Ωh1 has to be solved.
Let us now discuss how we algorithmically solve the optimization problem in (3.3). Due to the

presence of the function θ1, respectively θh1 , no standard total variation minimization technique
can be used. Instead one may need to adapt one of these standard approaches to this more
general functional. We note, that the minimization of locally weighted total variation have been



16 A. LANGER AND F. GASPOZ

already considered in the literature and an algorithm to solve a minimization problem of the type
as in (3.3) is already presented in [39]. In particular, in [39] the primal-dual algorithm of [10]
is adapted to a locally weighted total variation regularization. This method requires, that the
locally distributed weights are strictly positive, i.e., θh1 (x) > 0 for every x ∈ Ωh1 in (3.3). The
proposed domain decomposition algorithms and their theory require that supp(θ1) ⊆ Ωh1 . Hence,
in our discrete setting one may easily set θh1 > 0 in Ωh1 and θh1 = 0 in Ωh \ Ωh1 , which allows to
use the algorithm provided in [39]. Nevertheless, we derive an algorithm for locally weighted total
variation, which does not require the strict positivity, and hence may be used to solve (3.1) and
(3.2) as well. Actually we adapt the split Bregman algorithm [30], which we are explaining next.

We first replace (∇hΩuh1 )|
Ωh1

with dh1 and then enforce the constraint (∇huh1 )|
Ωh1

= dh1 by

applying the Bregman iteration yielding

(uh,k+1

1,Ωh1
,dh,k+1

1 ) ∈ arg min
uh1 |

Ωh1

,dh1

1

2
‖uh1 − f

h,n+1
1 ‖2X1

+ α
∑
x∈Ωh1

θh1 |d
h
1 |`2 +

µ

2
‖dh1 − (∇hΩuh1 )|

Ωh1

− bk1‖2Y1

bk+1
1 = bk1 + (∇hΩu

h,k+1
1 )|

Ωh1

− dh,k+1
1

(3.4)

where µ > 0 is a Lagrange multiplier and bk1 ∈ Y1. The obtained minimization problem in (3.4)
is then iteratively minimized, first with respect to uh1 |

Ωh1

and then to dh1 . Note, that ∇hΩ is a

quite local operator, i.e., it affects only neighbouring pixels. Hence, by carefully considering the
restriction to Ωh1 (i.e., we use Dirichlet boundary conditions on the interface between Ωh1 and

Ωh \ Ωh1 ), uh,k+1

1,Ωh1
∈ X1 is obtained, as in [30], by solving a linear system only of size |Ωh1 |, see

Appendix A. The optimal value dh,k+1
1 can be computed by a shrinkage formula [56], i.e.,

dh,k+1
1 = max

{
|(∇hΩu

h,k+1
1 )|

Ωh1

+ bk1 |`2 −
α

µ
θh1 , 0

} (∇hΩu
h,k+1
1 )|

Ωh1

+ bk1

|(∇hΩu
h,k+1
1 )|

Ωh1

+ bk1 |`2
,

where we follow the convention that 0 · 0
0 = 0.

Since this adapted split Bregman method does not require the strict positivity of θ1 and θh1 ,
it is also able to solve (3.1) and (3.2) by just adjusting the respective quantities accordingly (i.e.,
without restricting to Ωh1 ).

Remark 3.1 (Overlapping to nonoverlapping). In a discrete setting the continuity assumption
on θhi , for i = 1, . . . ,M , is obsolete. Hence we may let the overlapping-size go to 0 yielding a
nonoverlapping decomposition. That is

θhi (x) =

{
1 if x ∈ Ωhi
0 else

for i = 1, . . . ,M . Then the subspace minimization problems read as

arg min
ui∈Xi

1

2
‖uhi − f

h,n+1
i ‖2Xi + α

∑
x∈Ωhi

|∇hΩuhi (x)|`2 ,

i = 1, . . . ,M . Thus in a discrete setting, using this discretization and restriction approach, in the
limit case of a nonoverlapping decomposition Algorithm 2.2 and Algorithm 2.3 become the Block
Gauss-Seidel and Relaxed Block Jacobi method of [45], respectively.

3.2. Restrict before discretization. Let us turn back to the infinite dimensional subdo-
main problem (3.1). Since the partition of unity is such that supp(θ1) ⊆ Ωh1 , we have

∫
Ω
θ1|Du1| =∫

Ω1
θ1|Du1|, cf. Lemma 2.2. Hence, by the optimality of un+1

1 we get fn+1
1 −un+1

1 ∈ ∂α
∫

Ω1
θ1|Dun+1

1 |.
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That is

(fn+1
1 − un+1

1 , v − un+1
1 ) + α

∫
Ω1

θ1|Dun+1
1 | ≤ α

∫
Ω1

θ1|Dv| ∀v ∈ L2(Ω).

This inequality holds if∫
Ω\Ω1

(fn+1
1 − un+1

1 )(v − un+1
1 )dx ≤ 0 and∫

Ω1

(fn+1
1 − un+1

1 )(v − un+1
1 )dx+ α

∫
Ω1

θ1|Dun+1
1 | ≤ α

∫
Ω1

θ1|Dv|

for all v ∈ L2(Ω). Hence un+1
1 fulfilling these two latter inequalities is a minimizer of the subspace

minimization problem (3.1). By the uniqueness of the minimizer, see Proposition 2.3, we therefore
obtain that

(3.5) un+1
1 =


fn+1

1 in Ω \ Ω1

arg min
u1∈L2(Ω1)

1
2‖u1 − fn+1

1 ‖2L2(Ω1) + α

∫
Ω1

θ1|Du1| in Ω1.

Thus, generating the minimizer of (3.1) results in solving an optimization problem in Ω1 only. As
above, due to the presence of the function θ1, usual total variation minimization techniques cannot
be used. For solving the optimization problem in (3.5), we want to use again the split Bregman
method adapted to locally weighted total variation. Therefore, we discretize (3.5) by using the
above notations and definitions yielding

(3.6) uh,n+1
1 =


fh,n+1

1 in Ωh2 \ Ωh1

arg min
uh1 |

Ωh1

∈X1

1

2
‖uh1 |

Ωh1

− fh,n+1
1 ‖2X1

+ α
∑
x∈Ωh1

θh1 (x)|∇hΩ1
(uh1 |

Ωh1

(x))|`2 in Ωh1 ,

where ∇hΩ1
denotes the standard gradient on Ωh1 with zero Neumann boundary conditions on ∂Ω1,

cf. Section 3.1. Similar as above, one derives the adapted split Bregman algorithm, presented in
Algorithm 3.1, where ∆h

Ω1
denotes the respective standard discrete Laplace operator on Ωh1 .

Algorithm 3.1 Split Bregman

Initialize: dh,01 = 0 = b0
1 and k = 0

while stopping criterion does not hold do
Solve (I − µ∆h

Ω1
)uh,k+1

1 |
Ωh1

= fh,n+1
1 − µdivhΩ1

(dh,k1 − bk1)

dh,k+1
1 = max{|∇hΩ1

(uh,k+1
1 |

Ωh1

) + bk1 |`2 − α
µθ

h
1 , 0}

∇hΩ1
(uh,k+1

1 |
Ωh1

)+bk1

|∇hΩ1
(uh,k+1

1 |
Ωh1

)+bk1 |`2

bk+1
1 = bk1 +∇hΩ1

(uh,k+1
1 |

Ωh1

)− dh,k+1
1

k = k + 1
end while

Let us mention that all the results presented in Section 3.1 and Section 3.2 hold symmetrically
for the minimization with respect to ui, i = 2, . . . ,M , and that the notations should be just
adjusted accordingly.

3.3. Comparison of the two restriction approaches. If we compare (3.3) with (3.6),
we observe, that the two above discussed restriction and discretization approaches lead to quite
similar optimization problems, while the difference lies in the different discrete gradient operators.
This difference indeed has a significant impact. While the “discretize before restriction” approach
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(DbR) allows for a nonoverlapping domain decomposition, see Remark 3.1, the “restrict before
discretization” approach (RbD) does not support this situation. This is due to the fact, that the
restriction process in the latter approach is done in the continuous setting, where the continuity of
θi is necessary. Moreover, from (3.6) we see that in case of a nonoverlapping decomposition, due to
the “local” operator ∇hΩi , no information from outside of Ωi is entering Ωi, which would result in a
wrong behaviour, see Figure 1. In particular in Figure 1 we contrast the reconstructions of the two
approaches for a nonoverlapping decomposition. The figures show, as expected, that the “restrict
before discretization” approach creates an artificial edge at the interface of the subdomains, while
the “discretize before restriction” approach still works correct.

(a) Reconstruction via
RbD

(b) Zoom of the high-
lighted area

(c) Colored zoom

(d) Reconstruction via
DbR

(e) Zoom of the high-
lighted area

(f) Colored zoom

Fig. 1. Reconstruction of an image of size 512×512 pixels corrupted by additive Gaussian white noise
with σ = 0.3 using Algorithm 2.2 and a nonoverlapping splitting into 2 domains. In the first row we show
the result via the “restrict before discretization” approach (RbD), while the second row shows the result
via the “discretize before restriction” approach (DbR). In (b) and (e) we zoomed in on the in (a) and (d)
highlighted area. In order to visualize the difference of the reconstructions, we color in (c) and (f) the
zoomed area.

However, in case of an overlapping decomposition, for which the proposed algorithms are ac-
tually constructed, both approaches seem to generate a very similar reconstruction, see Figure
2 where the overlapping size is 512 × 20 pixels. Moreover, performing several experiments, for
both approaches the overall behaviour seems to be very similar, see Figure 3 for the example in
Figure 2. More precisely, in all our experiments we observe that the sequential domain decompo-
sition algorithm using the “restrict before discretization” approach always needs at most the same
amount of iterations as the other approach, while in most of the experiments the algorithm even
terminates one iteration earlier when using the “restrict before discretization” approach. In par-
ticular in Figure 3 we see, that with the “restrict before discretization” approach only 17 iterations
till termination are needed while with the “discretize before restriction” approach 18 iterations
are needed. In our numerical experiments in Section 4 we exclusively use the “first restrict and
then discretize” approach, which seems theoretically more consistent, is finally even slightly eas-
ier to implement, since on the subdomains no specific Dirichlet boundary conditions have to be
considered, and seems to be slightly faster (or at least not slower) than the other approach.
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(a) Reconstruction via
RbD

(b) Zoom of the high-
lighted area

(c) Colored zoom

(d) Reconstruction via
DbR

(e) Zoom of the high-
lighted area

(f) Colored zoom

Fig. 2. Reconstruction of an image of size 512×512 pixels corrupted by additive Gaussian white noise
with σ = 0.3 using Algorithm 2.2 and an overlapping splitting into 2 domains. In the first row we show
the result via the “restrict before discretization” approach (RbD), while the second row shows the result
via the “discretize before restriction” approach (DbR). In (b) and (e) we zoomed in on the in (a) and (d)
highlighted area. In order to visualize possible differences of the reconstructions, we color in (c) and (f)
the zoomed area.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Iteration

-20
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(a) Convergence order

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17

Iteration

1.01
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1.05
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1.09

10
-3

(b) (‖un‖)n

Fig. 3. Performance of Algorithm 2.2 using the “restrict before discretization” approach (RbD) and
“discretize before restriction” approach (DbR).

3.4. Implementation issues. We recall that in each iteration of the proposed parallel do-
main decomposition algorithm we set

vn+1
i =

(M − 1)vni + un+1
i − fn+1

i

M

for i = 1, ...,M , see Algorithm 2.5. Note, that by (3.5) we have, un+1
i = fn+1

i in Ω \ Ωi. Since
v0
i = 0, we iteratively obtain that supp vni ⊂ Ωi for all n ∈ N. Thus, in our implementation we

need to update vni in Ωi only. Consequently only un+1
i in Ωi is needed, which is obtained by
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solving an optimization problem restricted so Ωi, see (3.5). Moreover, since un+1 =
∑M
i=1 u

n+1
i

M =

g +
∑M
i=1 v

n+1
i , we do not even need un+1

i for updating un+1 and hence un+1
i does not have to be

communicated, in case of a multi-processor implementation. Hence, in each subdomain we only
need (to compute) quantities which are restricted to this subdomain, and the update un+1

i = fn+1
i

in Ω \ Ωi is not performed at all.
For the alternating domain decomposition algorithm we obtain the same. In particular, since

uni − fni = 0 in Ω \ Ωi, we conclude that

un = g +

M∑
i=1

(uni |Ωi
− fni |Ωi ).

Note, that the same argumentation also holds in a discrete setting due to (3.3) and (3.6).
In order to speed up the minimization procedure in the subdomains, we only initialize in the

first outer iteration the split Bregman algorithm as described in Algorithm 3.1. Later we use
the approximation of the previous iterate. More precisely, let ũh,n1 be the solution of the split

Bregman iteration in the n-th outer iteration and d̃
h,n

1 , b̃
n

1 the associated variables. Then in the

next iteration we initialize the split Bregman iteration by dh,01 = d̃
h,n

1 , and b0
1 = b̃

n

1 .

4. Experiments. In the following section we present numerical experiments for the pro-
posed sequential and parallel algorithms for image denoising. The value of the parameter α is
chosen arbitrarily and is not optimized in any way. For automatically choosing the regularization
parameter α in (1.1) we refer the reader to [39] and references therein. As subdomain solver we
use Algorithm 3.1 with µ = 3

α , which is terminated as soon as

(4.1)
‖uh,ki − uh,k−1

i ‖`1
‖uh,ki ‖`1

≤ tol

holds in subdomain i ∈ {1, . . . ,M} for the first time, where tol is a predefined tolerance.
All the computations presented are done in Matlab on a MacBook Pro with 2.5 GHz Intel

Core i7 processor (possesses 4 cores).

4.1. Domain decomposition. For simplicity let Ω ⊂ R2 be a rectangular domain [a, b] ×
[c, d], with a < b and c < d. Then we decompose Ω into M ∈ N subdomains Ωi such that

Ωi = [ai, bi]× [c, d] for i = 1, . . . ,M

where a =: a1 < a2 < b1 < a3 < b2 < . . . < bM−1 < bM := b, see Figure 4 for M = 3. The
overlapping width is then wi = |bi − ai+1|.

a ba2 b1 a3 b2

︷ ︸︸ ︷Ω1 ︷ ︸︸ ︷Ω2 ︷ ︸︸ ︷Ω3

Fig. 4. Overlapping domain decomposition of Ω into Ω1, Ω2 and Ω3.
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Ω1 Ω1 Ω1 Ω1 Ω2 Ω2 Ω2 Ω2

Fig. 5. Partitioning of an overlapping decomposition by colouring technique.

The auxiliary function θi, i = 1, . . . ,M , is chosen as

θi(x) =


1 if x ∈ Ωi \ (Ωi−1 ∪ Ωi+1)
bi−x

bi−ai+1
if x ∈ Ωi ∩ Ωi+1

x−ai
bi−1−ai if x ∈ Ωi ∩ Ωi−1

0 else (if x ∈ Ω \ Ωi)

for i = 1, . . . ,M,

where Ω0 = ΩM+1 = ∅. Compare with Figure 6 and Figure 7 for a decomposition into 2 and 3
domains, respectively.

In the parallel multi-subdomain method (Algorithm 2.5) for any n ≥ 0 the value vn+1
i is

obtained by a weighted sum of the previous iterate vni and un+1
i − fn+1

i , whereas the latter term
is weighted by 1

M . This weight tends to zero as the number of subdomains M grows, which may
lead to a crucial decrease of the convergence speed of the algorithm. In order to overcome this
behaviour, we may use a so-called colouring technique; see e.g. [53]. That is, the image domain Ω
is partitioned into a fixed number Mc of classes of overlapping subdomains, whereby each class is
coloured by a different colour, i.e.,

Ω =

Mc⋃
j=1

Ωj ,

where Ωj is the union of disjoint subdomains with the same colour. An example of an overlapping
decomposition of a rectangular domain Ω into 8 subdomains coloured by 2 different colours is
depicted in Figure 5. We note, that in general the disjoint domains with same colour cannot
be solved in parallel without introducing additional new constraints, as the following example,
borrowed from Warga [57], shows.

Example 4.1. Let V := [0, 1]×{0}×[0, 1], V1 := {(c, 0, 0) c ∈ [0, 1]}, V3 := {(0, 0, c) c ∈ [0, 1]},
and ϕ : V → R given by ϕ(x) = |x1 − x3| − min{x1, x3}, where x = (x1, x2, x3). We have that
0 = arg minxi∈Vi ϕ(x) for i ∈ {1, 3}, while (1, 0, 1) = arg minx∈V ϕ(x).

However, if the problem is additively separable with respect to the considered disjoint decom-
position, then the problem can be solved easily in parallel on the disjoint domains. Since this
property holds for our considered subdomain problems with respect to the disjoint domains with
same colour, a partitioning with colouring technique changes the update of vn+1

i to

vn+1
i =

(Mc − 1)vni + un+1
i − fn+1

i

Mc
, for n ≥ 0,

where Mc ≤ M . In particular if M is large, then Mc � M . For instance, decomposing and
colouring as in Figure 5, keeps Mc = 2 for any number of subdomains M > 1.

4.2. Sequential algorithm. The scope of this section is to illustrate by simple examples
the main properties of the algorithms, as proven in our theoretical analysis. In particular, we
investigate the convergence order of ‖un+1

i−1 − uni ‖L2(Ω) for i = 1, . . . ,M and we demonstrate the
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monotonicity (2.10). Moreover, we emphasize the robustness in correct computing minimizers
independently of the size of overlapping regions and of the number of subdomains. As tolerance
for the subspace solver we set tol = 10−6.

In Figure 6 we show an image corrupted by additive Gaussian noise with standard deviation
σ = 0.3 and zero mean. This image is then reconstructed by means of total variation minimization.
That is, the reconstruction is the solution of (1.1) with α = 0.5. In order to obtain a minimizer
of (1.1) we utilize the proposed alternating domain decomposition method, see Algorithm 2.2
and Algorithm 2.4. We test our algorithms for different numbers of subdomains, in particular we
present results for M ∈ {2, 3, 6}, whereas the domain is split vertically, as shown in Figure 6 and
Figure 7 for an overlapping decomposition into 2 and 3 domains respectively. There the red and
blue lines indicate a right and left (inner) boundary of a subdomain respectively. The domain
decomposition algorithm is terminated as soon as

‖unM − unM−1‖L2(Ω) ≤ 10−7

for the first time, which indicates that nearly no changes are to be expected. This stopping
criterion makes sense, since by Theorem 2.8 and Corollary 2.10, together with their extension to
the multi-domain case, any converging subsequence of (uni )n, i = 1, . . . ,M , has the same limit,
minimizing (1.1). The reconstructions of Figure 6(a) and Figure 7(a) obtained via the proposed
overlapping domain decomposition algorithm, see Algorithm 2.4, where the overlapping regions
are of size 256× 80 pixels, are shown in Figure 6(b) and Figure 7(b) respectively.

(a) Noisy image decomposed
into 2 subdomains.

(b) Reconstruction.

(c) θ1. (d) θ2.

Fig. 6. Reconstruction of an image (512×512 pixels) corrupted by Gaussian white noise with standard
deviation σ = 0.3 using the regularization parameter α = 0.5. The noisy image is decomposed into 2
overlapping subdomains with overlap-size 512 × 80 pixels. The blue and red line indicate the interfaces of
the overlapping region.

For a decomposition into M = 2 subdomains, we depict in Figure 8(a) for different sizes of
overlapping regions the decay of (‖un2 − un1‖L2(Ω))n. In particular, we test for overlapping regions

of size 256 × 20 pixels, 256 × 80 pixels, and 256 × 120 pixels. We detect, that for γ = 3
2 we

have ‖un2 − un1‖L2(Ω) ≤ 1
nγ for all n. This not only gives us an idea of the convergence order

of the sequential domain decomposition algorithm, but also justifies the boundedness of (fni )n,
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(a) Noisy image decomposed
into 3 subdomains.

(b) Reconstruction.

(c) θ1. (d) θ2. (e) θ3.

Fig. 7. Reconstruction of an image (512×512 pixels) corrupted by Gaussian white noise with standard
deviation σ = 0.3 using the regularization parameter α = 0.5. The noisy image is decomposed into 3
overlapping subdomains with overlap-size 512 × 80 pixels. The blue and red line indicate the interfaces of
the overlapping region.

which is actually anyway theoretically ensured in a discrete setting, cf. Remark 2.9. Moreover, we
observe that the larger the overlapping region the more iterations are needed till termination. The
monotonicity (2.10) is depicted in Figure 8(b), where we use the notation un−1/2 := un1 and un :=
un2 for all n ∈ N. We observe, that after one outer iteration ‖un‖L2(Ω) (where n = 1, 1 + 1

2 , 2, . . .)
does not change visibly anymore.

1 4 7 10 13 16 19 22 25 28 31 34

Iteration

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

(a) Convergence order

 1     4     7     10     13     16     19     22     25     28     31     34    

Iteration

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

10
-3

(b) ‖un‖

Fig. 8. Performance record of the reconstruction of the image in Figure 6 with different overlapping-
sizes.

For M = 3 and M = 6, we depict in Figure 9 the performance of the sequential domain
decomposition algorithm for overlapping sizes of 512 × 40 pixels. In Figure 9(a) and Figure 9(b)
we present the decay of the norms ‖un+1

i−1 − uni ‖L2(Ω), i = 1, . . . ,M , with respect to the outer
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iteration n. As for the case M = 2, we observe, that ‖un+1
i−1 − uni ‖L2(Ω) ≤ 1

n3/2 for i = 1, . . . ,M ,

showing that the sequences (fni )n are indeed bounded. Using the notation un+i/M := un+1
i for

n = 0, 1, 2, . . . and i = 1, . . . ,M , we depict in Figure 9(c) and 9(d) the monotonicity of ‖un‖L2(Ω)

with respect to the outer iterations n.

1 4 7 10 13 16 19 22 25 28 31 34

Iteration

-20

-15

-10

-5

0

(a) Convergence order for M = 3.
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Iteration

-16
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-4
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(b) Convergence order for M = 6.
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(c) Monotonicity of ‖un‖ for M = 3.
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(d) Monotonicity of ‖un‖ for M = 6.

Fig. 9. Performance record of the reconstruction of the image in Figure 6 with different numbers of
subdomains.

4.3. Parallel algorithm. Finally, we demonstrate the efficiency of the proposed parallel
domain decomposition method (see Algorithm 2.5) when implemented on a multiple processor
computer. We compare its performance with the split Bregman algorithm [30], which computes a
solution of (1.1) without any domain decomposition. Notice that other algorithms for computing
a solution of (1.1), see for example [6, 9], might be used as well, changing the result maybe
qualitatively but not quantitatively. For a fair comparison, in the domain decomposition method
we use the split Bregman method as subdomain solver, described in Algorithm 3.1, and stop it as
soon as (4.1) holds for the first time for a given tolerance tol := tol(n), which depends here on the
outer iteration n. This iteration dependent tolerance seems reasonable to us, since we realized in
our numerical tests, that in the first outer iterations the subdomain problems do not need to be
solved very accurately, due to the averaging of the current and previous iterates in the update of
un, see Algorithm 2.5. Therefore we set

tol(n) =



10−4 if 1 ≤ n ≤ 4

5 · 10−5 if 4 < n ≤ 7

10−5 if 7 < n ≤ 50

8 · 10−6 if 50 < n ≤ 400

5 · 10−6 if n > 400

,
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which is chosen empirically and not optimized in any way. We consider partitions of the image
domain into M = 2, 4, 8 subdomains and utilize Algorithm 2.5 to compute a solution of (1.1). For a
splitting into 4 and 8 domains we consider a decomposition without and with colouring technique.
In case of using the colouring technique the domains are coloured as described in Figure 5 leading
to Mc = 2. Since we are comparing the convergence speed of different algorithms, we terminate
the algorithms as soon as the energy J drops below a certain critical energy J∗ for the first time.
This critical energy is obtained empirically by solving the global problem very accurately, so that
J∗ is very close to the true minimum.

For our comparison we consider the image in Figure 10(a) of size 1024 × 1024 pixels, which
has been corrupted by additive Gaussian noise with standard deviation σ = 0.1 and zero mean.
In the parallel domain decomposition algorithm as well as in the split Bregman algorithm we
denoise the image by choosing α = 1. In the parallel domain decomposition algorithm the size
of the overlapping region is set to be 1024 × 20 pixels. In Table 1 we show for different numbers
of subdomains the required time (in seconds) and the number of iterations until the algorithms
reached the significant energy J∗ = 0.018178900879. The restored image is shown in Figure
10(b). Note, that by domain decomposition, on the one hand, we reduce the dimensionality of
the problem, but, on the other hand, in each outer iteration the update vn+1

i is a weighted sum of
the current and previous iterate. This averaging is needed for theoretical reasons, in particular to
ensure the convergence to the minimizer of the global problem. The colouring technique reduces
the averaging effect, which leads to a faster convergence. It is obvious that with increasing number
of subdomains M this effect becomes more and more visible, see Table 1. Additionally, we also
have to take the communication time of the processors into account. All these facts sum up to the
actual computing time. Hence, we cannot expect a very dramatic decrease in computational time.
Nevertheless, we observe from Table 1 that the domain decomposition algorithm with splitting
into M = 2, 4, 8 subdomains is faster than the split Bregman algrorithm computing the solution
on the whole domain (1 domain). Thereby, for a decomposition into 8 domains using the colouring
technique the best performance with respect to time and iterations is obtained. More precisely,
using the parallel domain decomposition method with 8 domains and colouring technique reduces
the overall computational time by more than 40% compared with no decomposition.

(a) Noisy image. (b) Restoration.

Fig. 10. Reconstruction of an image of size 1024 × 1024 pixels corrupted by additive Gaussian white
noise with σ = 0.1.

5. Conclusion. We developed convergent overlapping domain decomposition methods for
the Rudin-Osher-Fatemi (ROF) problem (1.1) by directly splitting the (primal) problem into
respective subdomain problems. In particular, we proved convergence of our proposed splitting
methods to a minimizer of the global problem in a continuous setting. We presented two different
ways to solve the subdomain problems leading to two similar but still different implementations.
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Table 1
Regularization parameter α = 1, stopping criterion J∗ = 0.018178900879.

CPU time (s) No. outer iterations
1 domain 34943.73 9738
2 domains 29228.35 4571
4 domains 22708.67 4470
4 domains with colouring 22205.89 4451
8 domains 21156.57 4253
8 domains with colouring 20481.00 4147

Due to the shape of our subdomain problems, the presented domain decomposition methods
are easily applicable to optimization problems with a spatially varying regularization weight, i.e.
to problems of the form

min
u∈L2(Ω)

1

2
‖u− g‖2L2(Ω) +

∫
Ω

α|Du|

where α : Ω → R+ is a continuous and bounded function, cf. [39, 41]. Recently, this type of
problem is gaining more and more attention, since it allows to penalize homogeneous regions
strongly, while in image parts with fine details only little regularization is performed.

Acknowledgment. The author would like to thank Massimo Fornasier (TU Munich) for
valuable discussions on functional analytic aspects of BV-functions.

Appendix A. Solving (3.4) with respect to uh,k+1

1,Ωh1
.

In order to get the solution uh,k+1

1,Ωh1
in (3.4), we only need to solve a linear system. We describe

here how this linear system looks when the domain is split vertically into overlapping stripes, as
in Section 4.1. Note, that only the size of the resulting linear problem depends on the number of
subdomains M , but not its structure.

Let the image domain Ωh = {x1
1 < x1

2 < · · · < x1
N1
} × {x2

1 < x2
2 < · · · < x2

N2
} be a

rectangular domain consisting of N1×N2 discrete pixels. Then we decompose Ωh into overlapping
subdomains Ωhi , i = 1, . . . ,M , such that Ωh1 = {x1

1 < · · · < x1
L} × {x2

1 < · · · < x2
N2
} and

Ωh\Ωh1 = {x1
L+1 < · · · < x1

N1
}×{x2

1 < · · · < x2
N2
}. Further we set Ω̃h1 = {x1

L+1}×{x2
1 < · · · < x2

N2
}.

We define a restriction of the global operator divhΩ to the domain Ωh1 by the local discrete divergent

operator d̃iv
h

Ω1
as

(d̃iv
h

Ω1
ph)(x1

i , x
2
j ) =

{
ph,1(x1

i , x
2
j ) if i = 1

ph,1(x1
i , x

2
j )− ph,1(x1

i−1, x
2
j ) if 1 < i ≤ L

+


ph,2(x1

i , x
2
j ) if j = 1

ph,2(x1
i , x

2
j )− ph,2(x1

i , x
2
j−1) if 1 < j < N2

−ph,2(x1
i , x

2
j−1) if j = N2

for every ph = (ph,1, ph,2) ∈ Y1. Accordingly, we denote the associated Laplace operator by ∆̃h
Ω1

defined as

∆̃h
Ω1
uh(x1

i , x
2
j ) =

{
uh(x1

i , x
2
j )− uh(x1

i+1, x
2
j ) if i = 1

2uh(x1
i , x

2
j )− uh(x1

i+1, x
2
j )− uh(x1

i−1, x
2
j ) if 1 < i ≤ L.

+


uh(x1

i , x
2
j )− uh(x1

i , x
2
j+1) if j = 1

2uh(x1
i , x

2
j )− uh(x1

i , x
2
j−1)− uh(x1

i , x
2
j+1) if 1 < j < N2

uh(x1
i , x

2
j )− uh(x1

i , x
2
j−1) if j = N2
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With the above notations the optimality of uh,k+1

1,Ωh1
in (3.4) is equivalent to the solution uh1 |

Ωh1

of the following boundary value problem

uh1 (x)− µ∆̃h
Ω1
uh1 (x) = fh,n+1

1 (x) + d̃iv
h

Ω1
(bk1 − dh1 )(x), x ∈ Ωh1(A.1)

uh1 (x) = fh,n+1
1 (x), x ∈ Ω̃h1 .(A.2)

The system (A.1)-(A.2) may be also written as a linear system

Ahvh = bh,

where the vector vh ∈ RN1L has the values uh1 |
Ωh1

as its components arranged in a particular order,

Ah ∈ RN1L×N1L and bh ∈ RN1L mimicking the associated matrix constituted from the left-hand
side and the right-hand side of (A.1) together with the boundary conditions (A.2), respectively.

We remark, that similar considerations yield the linear system for obtaining uh,k+1

i,Ωhi
, i =

2, . . . ,M .
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