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Abstract

Computational problems of large-scale appearing in biomedical imaging, astronomy,
art restoration, and data analysis are gaining recently a lot of attention due to better hard-
ware, higher dimensionality of images and data sets, more parameters to be measured,
and an increasing number of data acquired. In the last couple of years non-smooth min-
imization problems such as total variation minimization became increasingly important
for the solution of these tasks. While being favourable due to the improved enhancement
of images compared to smooth imaging approaches, non-smooth minimization problems
typically scale badly with the dimension of the data. Hence, for large imaging problems
solved by total variation minimization domain decomposition algorithms have been pro-
posed, aiming to split one large problem into N > 1 smaller problems which can be solved
on parallel CPUs. We discuss domain decomposition algorithms in which the N subprob-
lems can be addressed by solving constrained minimization problems, which might be
done via an iterative thresholding technique. In this paper we are interested in acceler-
ating the computation of the solution of the subproblems by nested Bregman iterations.
More precisely, we propose a Bregmanized Operator Splitting - Split Bregman (BOS-SB)
algorithm, which enforces the constraint by introducing a Bregman iteration that is then
solved by the Split Bregman strategy. In average, this new solution technique is three
times faster than the iterative oblique thresholding, which was currently used in domain
decomposition methods for total variation minimization.

1 Introduction

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. We are interested in the
minimization in BV (Ω) of the functional

J (u) := ‖Tu− g‖2L2(Ω) + 2α |Du| (Ω), (1)

where T : L2(Ω) → L2(Ω) is a bounded linear operator, g ∈ L2(Ω) is a datum, and α > 0 is
a fixed regularization parameter [13]. We recall, that for u ∈ L1(Ω)

V (u,Ω) := sup

{∫
Ω
udivϕ dx : ϕ ∈

[
C1
c (Ω)

]2
, ‖ϕ‖∞ ≤ 1

}
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is the variation of u. Further, u ∈ BV (Ω), the space of bounded variation functions [1, 14], if
and only if V (u,Ω) <∞. In this case, we denote |Du|(Ω) = V (u,Ω) the total variation of u.
If u ∈ W 1,1(Ω) (the Sobolev space of L1-functions with L1-distributional derivatives), then
|Du|(Ω) =

∫
Ω |∇u| d x. In order to guarantee the existence of minimizers for (1) we assume

that:

(C) J is coercive in L2(Ω), i.e., there exists a constant C > 0 such that {u ∈ L2(Ω) : J (u) ≤
C} is bounded in L2(Ω).

It is well known that if 1 /∈ ker(T ) then condition (C) is satisfied, see [28, Proposition 3.1].

In image restoration the minimization of the total variation (1), first proposed by Rudin,
Osher and Fatemi [25], plays a fundamental role as a regularization technique, since it pre-
serves edges and discontinuities in images. Since this pioneering work several numerical strate-
gies to perform efficiently total variation minimization have been suggested in the literature,
see for example [2, 4, 5, 6, 7, 8, 10, 12, 19, 23, 24, 28].

In this paper we are concerned with the numerical minimization of (1) for large scale
imaging problems. Due to the continuous improvement of hardware, the dimensionality of
images and measurements in general is increasing, resulting into large-scale data sets that
want to be processed. A typical choice for image enhancement, e.g., image restoration, image
denoising and image deblurring, is total variation minimization (1). While existing state-of-
the-art numerical algorithms for the solution of (1) - as listed above - perform very efficiently
for small- and medium-scale problems, none of them is able to address in real-time extremely
large problems. In these situations subspace correction and domain decomposition methods
are fundamental allowing us to split the computational workload and solve a sequence of
smaller problems rather than one large problem. Recently such methods have been success-
fully introduced for `1-norm and total variation minimization in [15, 16, 17, 26]. In particular,
in [17] and [16] decomposition methods for the minimization of (1) have been proposed, split-
ting the spatial domain into non-overlapping and overlapping subdomains respectively. In
both approaches the domain decomposition strategy amounts to minimize a convex func-
tional under some linear constraints on each subdomain iteratively. These constraints are
needed to ensure the correct treatment of the solution on the interfaces of the domain decom-
position patches, i.e., to preserve crossing discontinuities. In particular, on each subdomain
a constrained optimization problem of the general type

min
u∈H
{F (u) := ‖u− z‖2L2(Ω) + 2α|Du|(Ω) subject to Au = 0} (2)

has to be solved, where z is a function given on a Hilbert space H and A is a linear operator
in H. For the overlapping domain decomposition method the linear constraint is simply
a trace condition, while for the non-overlapping algorithm the constraint is the orthogonal
projection onto a subspace. In [16, 17] these subminimization problems were solved by the
Iterative Oblique Thresholding, which is based on an iterative proximity map algorithm and
the computation of a Lagrange multiplier by a fixed point iteration, see [17, Section 4.2].

1.1 Our Approach

In this paper we are concerned with increasing the performance of the non-overlapping domain
decomposition algorithms proposed in [17], by using a more efficient technique to solve the
subminimization problems (2).
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There already exist several numerical methods which solve (2) efficiently, such as the Aug-
mented Lagrange Method [20] and its variations known under the name of Bregman iterations
[24, 29, 21], because of their relation to the Bregman distance. In this paper, instead of us-
ing the Iterative Oblique Thresholding technique proposed in [16, 17], we suggest to use the
recently introduced Bregmanized Operator Splitting technique [30] combined with the Split
Bregman method [19] for the solution of (2). This approach avoids the computation of a
costly fixed point iteration in each domain decomposition step and consequently speeds up
the overall computational time of the domain decomposition algorithms, cf. the numerical
examples in Section 4.

Organization of the paper The rest of the paper is organized as follows. In Section
2 we propose a new algorithm for solving constrained minimization problems occurring in
the subdomains of a domain decomposition. The non-overlapping domain decomposition
approach is studied in Section 3, where also the integration of the new algorithm for such a
approach is discussed. In Section 4 we describe the numerical implementation which we used
for our numerical examples in Section 5.

2 Bregman Algorithms

Let us start this section with introducing some notations, which will be useful in the sequel.
For a convex functional F : H → R̄, we define the subdifferential of F at v ∈ H, as the set
valued function

∂F (v) :=

{
∅ if F (v) =∞
{v∗ ∈ H : 〈v∗, u− v〉+ F (v) ≤ F (u) ∀u ∈ H} otherwise.

It is clear from this definition that 0 ∈ ∂F (v) if and only if v is a minimizer of F . The Bregman
distance, associated with a convex functional F : H → R̄, of the vectors u, v ∈ Dom(F ) is
defined by

Dp
F (u, v) := F (u)− F (v)− 〈p, u− v〉,

for p ∈ ∂F (v). Note that the Bregman distance is not a distance in the usual sense, since it is
in general not symmetric and also the triangle inequality does not hold. However it satisfies
Dp
F (u, v) ≥ 0 and Dp

F (u, v) = 0 if u = v [3].
In [24] the authors proposed the so-called Bregman Iteration to solve constrained opti-

mization problems of the type (2):

Algorithm 1. Bregman Iteration: Let λ > 0 and u(0) = 0 then for k = 0, 1, . . . do

p(k) ∈ ∂F (u(k))

u(k+1) = arg min
u∈H

Dp(k)

F (u, u(k)) + λ‖Au‖2L2(Ω)

(3)

In [24] the weak convergence of this algorithm to a solution of (2) is ensured and it is
shown that the sequence of residuals (‖Au(k)‖)k is monotonically decreasing to zero. Since
the Bregman Iteration is equivalent to an augmented Lagrangian method its convergence is
guaranteed by the results in [18]. Moreover, in [29] it has been shown that the Bregman
Iteration is equivalent to the following simplified iterative scheme:
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Algorithm 2. Simplified Bregman Iteration: Let λ > 0. Initialize u(0) = 0 and f (0) = 0 then
for k = 0, 1, . . . do

u(k+1) = arg min
u∈H

F (u) + λ‖Au− f (k)‖2L2(Ω)

f (k+1) = f (k) −Au(k+1).
(4)

The direct computation of the update u(k+1) in (3) and (4) is sometimes not efficiently
and exactly solvable, in particular if the constraint is ill-posed. In order to overcome this
drawback we may suggest to solve the minimization problem in (4) via a forward-backward
operator splitting, see [8] for more details. In particular, we are interested in the Bregmanized
Operator Splitting algorithm [30], which is based on one forward-backward operator splitting
iteration and a suitable update of the Lagrange multiplier:

Algorithm 3. Bregmanized Operator Splitting (BOS): Let λ, δ > 0. Initialize u(0) = 0 and
f (0) = 0 then for k = 0, 1, . . . do

u(k+1) = arg min
u∈H

F (u) +
λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

f (k+1) = f (k) −Au(k+1).

(5)

This algorithm is ensured to converge to a minimal solution of (2) if 0 < δ < 1
‖A∗A‖ .

Moreover, it is very stable in practice, and is usually easy to implement.
We note that the minimization problem in (5) is equivalent to the famous ROF-problem

[25] and therefore there exist several numerical methods which solve this problem efficiently,
see [4, 5, 11, 19]. Among the fastest is the Split Bregman Method [19], whose main idea is to
consider instead of

arg min
u∈H
‖u− z‖2L2(Ω) + 2α|Du|(Ω) +

λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

the following equivalent constrained problem

arg min
u,d
‖u− z‖2L2(Ω) + 2α|d|(Ω) +

λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω) s.t. d = Du.

Solving this constrained minimization problem by the simplified Bregman Iteration we get
the Split Bregman Method:

(u(`+1), d(`+1)) = argminu,d ‖u− z‖2L2(Ω) + 2α|d|(Ω) +
λ

δ
‖u− (u(k) − δA∗(Au(k) − f (k)))‖2L2(Ω)

+ µ‖d−Du− b(`)‖2L2(Ω)

b(`+1) = b(`) + (Du(`+1) − d(`+1)),

(6)

where µ > 0. We propose to combine the Bregmanized Operator Splitting with the Split
Bregman Iteration to solve (2), which results in an algorithm using two nested iterations:
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Algorithm 4. Bregmanized Operator Splitting - Split Bregman (BOS-SB): Let λ, δ, µ > 0
be regularization parameters. Initialize u(0,L0) = 0 and f (0) = 0 then for k = 0, 1, . . . do

u(k+1,0) = u(k,Lk), d(k+1,0) = b(k+1,0) = 0
for ` = 0, . . . , Lk+1 do

u(k+1,`+1) = arg minu∈H ‖u− z‖2L2(Ω) + λ
δ ‖u− (u(k,Lk) − δA∗(Au(k,Lk) − f (k)))‖2L2(Ω)

+µ‖d(k+1,`) −Du− b(k+1,`)‖2L2(Ω)

d(k+1,`+1) = arg mind 2α|d|(Ω) + µ‖d−Du(k+1,`+1) − b(k+1,`)‖2L2(Ω)

b(k+1,`+1) = b(k+1,`) +Du(k+1,`+1) − d(k+1,`+1)

f (k+1) = f (k) −Au(k+1,Lk+1).
(7)

The number of inner iteration Lk is chosen such that ‖u(k,Lk) − u(k,Lk−1)‖ ≤ tol.

3 Non-overlapping domain decomposition

In this section we discuss the minimization of functional (1) by using the non-overlapping
domain decomposition approach suggested in [17] and propose to solve the corresponding
subminimization problems with the help of Algorithm 4.

We decompose the spatial domain Ω into two disjoint subdomains Ω1 and Ω2 such that
Ω = Ω1 ∪ Ω2 and Ω1 = Ω \ Ω2. Note that in the discussion which follows we consider a
splitting into two subdomains only. However, as also illustrated with our numerical examples
in Section 4, everything works for multiple subdomains as well. Associated to this splitting
we define Vi = {u ∈ L2(Ω) : supp(u) ⊂ Ωi} and orthogonal projections πVi : L2(Ω) → Vi
for i = 1, 2. Since L2(Ω) = V1 ⊕ V2 is a direct sum and πVi(u) = u1Ωi , every u ∈ L2(Ω)
can be uniquely represented as u = πV1(u) + πV2(u). In the following we denote ui = πVi(u),
for i = 1, 2. With this splitting in [17] the following alternating algorithm is proposed to

minimize J : pick an initial V1 ⊕ V2 3 u(0)
1 + u

(0)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and

iterate 
u

(n+1)
1 ≈ argminv1∈V1

J (v1 + u
(n)
2 )

u
(n+1)
2 ≈ argminv2∈V2

J (u
(n+1)
1 + v2)

u(n+1) := u
(n+1)
1 + u

(n+1)
2 .

(8)

Here we use ”≈” (the approximation symbol), since in practice we never perform the exact
minimization.

3.1 Solution of the subspace minimization problems

In [17] an implementation of the individual subproblems of (8) is suggested by introducing
auxiliary functionals on V1 ⊕ V2 for u1 ∈ V1, u2 ∈ V2, and a ∈ Vi by

Ji(u1, u2; a) := J (u1 + u2) + ‖ui − a‖2L2(Ω) − ‖T (ui − a)‖2L2(Ω)

= ‖ui − (a+ πViT
∗(g − Tuî − Ta))‖2L2(Ω) + 2α |D(u1 + u2)| (Ω) + Φ(a, g, uî),

(9)



Bregmanized Domain Decomposition 6

for i = 1, 2 and î ∈ {1, 2} \ {i}, where Φ is a function of a, g, uî only. Assuming that ‖T‖ < 1,
the subminimization iterations

u
(m+1)
i = arg min

ui∈Vi
Ji(u1, u2;u

(m)
i ) m ≥ 0 (10)

converge to a minimizer of the corresponding subproblems of (8), i.e.,

arg min
ui∈Vi

J (u1 + u2)

for i = 1, 2. We remark that the assumption ‖T‖ < 1 is not a restriction at all, since when
the norm is exceeding 1, we just rescale the problem easily by multiplying the functional J
by a positive constant γ < 1

‖T‖2 , and we minimize the resulting functional

Jγ(u) = ‖√γTu−√γg‖2L2(Ω) + 2γα|D(u)|(Ω),

which has the same minimizers as J .
Let us further decompose Ω2 = Ω̂2 ∪ (Ω2 \ Ω̂2) with ∂Ω̂2 ∩ ∂Ω1 = ∂Ω2 ∩ ∂Ω1, where

Ω̂2 ⊂ Ω2 is a neighborhood stripe around the interface ∂Ω2 ∩ ∂Ω1. Analogously we split
Ω1 = Ω̂1 ∪ (Ω1 \ Ω̂1) with ∂Ω̂1 ∩ ∂Ω2 = ∂Ω1 ∩ ∂Ω2. Associated to these decompositions we
define V̂i = {u ∈ L2(Ω) : supp(u) ⊂ Ω̂i}. By the splitting of the total variation

|D(u1 + u2)|(Ω) =|D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)|(Ω1 ∪ Ω̂2) + |Du2|Ω2\Ω̂2
|(Ω2 \ Ω̂2)

+

∫
∂Ω̂2∩∂(Ω2\Ω̂2)

|u+
2 − u

−
2 |dHd−1(x), (11)

whereHd is the Hausdorff measure of dimension d and u|Ω1∪Ω̂2
is the restriction of u to Ω1∪Ω̂2,

we can restrict the minimization in (10) to the domain Ω1 ∪ Ω̂2 and Ω2 ∪ Ω̂1 respectively, i.e.,

u
(m+1)
1 = arg min

u1∈V1

‖u1 − (u
(m)
1 + πV1T

∗(g − Tu2 − Tu(m)
1 ))‖2

L2(Ω1∪Ω̂2)

+2α
∣∣∣D(u1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣∣∣ (Ω1 ∪ Ω̂2), m ≥ 0,

u
(m+1)
2 = arg min

u2∈V2

‖u2 − (u
(m)
2 + πV2T

∗(g − Tu1 − Tu(m)
2 ))‖2

L2(Ω1∪Ω̂2)

+2α
∣∣∣D(u1|Ω2∪Ω̂1

+ u2|Ω2∪Ω̂1
)
∣∣∣ (Ω2 ∪ Ω̂1), m ≥ 0.

Eventually, these subminimization problems can be rewritten as problems on Vi⊕V̂î, i ∈ {1, 2}
and read

arg min
u∈V1⊕V̂2

‖u− z1‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(u|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)
∣∣∣ (Ω1 ∪ Ω̂2) s.t. πV̂2

u = 0, (12)

arg min
u∈V2⊕V̂1

‖u− z2‖2L2(Ω1∪Ω̂2)
+ 2α

∣∣∣D(u1|Ω2∪Ω̂1
+ u|Ω2∪Ω̂1

)
∣∣∣ (Ω2 ∪ Ω̂1) s.t. πV̂1

u = 0, (13)

where z1 = u
(m)
1 + πV1T

∗(g − Tu2 − Tu(m)
1 ) and z2 = u

(m)
2 + πV2T

∗(g − Tu1 − Tu(m)
2 ). We

notice that the subproblems (12) and (13) are indeed of the type (2).



Bregmanized Domain Decomposition 7

3.1.1 Oblique Thresholding (OT)

In [17] the constrained minimization problems (12)-(13) are solved by Oblique Thresholding,
which is based on an iterative proximity map algorithm and the computation of a Lagrange
multiplier by a fixed point iteration. More precisely, iteration (10) for i = 1 is explicitly
computed by

u
(m+1)
1 = (I − PαK)(z1 + u2|Ω1∪Ω̂2

− η(m)
1 )− u2|Ω1∪Ω̂2

, (14)

where η
(m)
1 is a solution of the fixed point iteration

η1 = πV̂2
PαK(η1 − z1 − u2|Ω1∪Ω̂2

),

with K being the closure of the set {div p : p ∈
[
C1
c (Ω)

]2
, |p(x)| ≤ 1 ∀x ∈ Ω}, |p(x)| =√

(p1(x))2 + (p2(x))2, and PK(u) = arg minv∈K ‖u − v‖L2(Ω) is the orthogonal projection
onto K. Indeed, the following proposition tells us that the oblique thresholding iteration (14)
converges to a minimizer of J on the subspaces.

Proposition 3.1. [17, Theorem 4.9] Assume u2 ∈ V2 and ‖T‖ < 1. Then the iteration (14)
converges weakly to a solution u∗1 ∈ V1 of arg minu1∈V1 J (u1 + u2) for any initial choice of

u
(0)
1 ∈ V1.

In [17] the computation of the orthogonal projection PK was implemented by using Cham-
bolle’s projection method [4]. For more details see [17, Section 4.2]. The oblique thresholding
iteration can be very slow in general, cf. [22]. In the next section we shall see how we can
accelerate this computation by replacing (14) and its solution via Chambolle’s method by
BOS-SB.

3.1.2 Bregmanized Operator Splitting - Split Bregman (BOS-SB)

In order to speed up the computation of algorithm (8) we suggest to solve each subproblem

by using Algorithm 4. Then, for example the solution to (12), i.e., the update u
(m+1)
1 ,

is computed by the following algorithm: Let A = πV̂2
and λ, δ, µ > 0 be regularization

parameters. Initialize u
(0,L0)
1 = u

(m)
1 and f (0) = 0 then for k = 0, 1, . . . do

u
(k+1,0)
1 = u

(k,Lk)
1 , d(k+1,0) = b(k+1,0) = 0

for ` = 0, . . . , Lk+1 do

u
(k+1,`+1)
1 = arg minu1∈V1⊕V̂2

1
2α‖u1 − z1‖2L2(Ω1∪Ω̂2)

+λ
δ ‖u1 − (u

(k,Lk)
1 − δA∗(Au(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+µ‖d(k+1,`) −D(u1|Ω1∪Ω̂2
+ u2|Ω1∪Ω̂2

)− b(k+1,`)‖2
L2(Ω1∪Ω̂2)

d(k+1,`+1) = arg mind |d|(Ω1 ∪ Ω̂2) + µ‖d−D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− b(k+1,`)‖2

L2(Ω1∪Ω̂2)

b(k+1,`+1) = b(k+1,`) +D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)− d(k+1,`+1)

f (k+1) = f (k) −Au(k+1,Lk+1)
1 .

(15)
In the finite dimensional setting, i.e., for V1 = RN×M , where N,M � 1 is the dimension

of the problem, the BOS-SB iteration (15) enjoys the following convergence properties.
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Proposition 3.2. Let u
(k+1,0)
1 = u

(k,Lk)
1 ∈ V1, d(k+1,0) = 0 and (u

(k+1,`)
1 )` and (d(k+1,`))`

be sequences generated by the Split Bregman Iteration (6). Then u
(k+1,`)
1 → u

(k+1,∗)
1 and

d(k+1,`) → d(k+1,∗) = Du
(k+1,∗)
1 for ` → ∞, where u

(k+1,∗)
1 solves the minimization problem

given by one iteration of the Bregmanized Operator Splitting, i.e.,

arg min
u1∈V1

1

2α
‖u1 − z1‖2L2(Ω1∪Ω̂2)

+
λ

δ
‖u1 − (u

(k,Lk)
1 − δA∗(Au(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+
∣∣∣D(u1|Ω1∪Ω̂2

+ u2|Ω1∪Ω̂2
)
∣∣∣ (Ω1 ∪ Ω̂2).

(16)

The proof is analogue to the one in [27], where the convergence of the Split Bregman
Iteration is shown.

In the case when we solve the minimization problem in (16) exactly, for example via
the Split Bregman Algorithm by setting formally Lk+1 =∞, then the following convergence
property for Algorithm 4 holds:

Proposition 3.3. Let u
(k,∗)
1 be the exact solution of the minimization problem in (16) for

the k-th iteration. Then the sequences (u
(k,∗)
1 )k generated by (15) converges for k → ∞ to a

solution u∗1 of (12).

The proof of this result can be found in [30].

3.2 Convergence Properties of the Sequential Domain Decomposition Al-
gorithm

In this section we describe the convergence properties of the sequential non-overlapping do-
main decomposition algorithm (8), which can be expressed explicitly as follows: Pick an initial

V1 ⊕ V2 3 u(0,M1)
1 + u

(0,M2)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and iterate

{
u

(n+1,0)
1 = u

(n,M1)
1

u
(n+1,m1+1)
1 = argminu1∈V1

J1(u1, u
(n,M2)
2 ;u

(n+1,m1)
1 ) m1 = 0, . . . ,M1 − 1{

u
(n+1,0)
2 = u

(n,M2)
2

u
(n+1,m2+1)
2 = argminu2∈V2

J2(u
(n+1,M1)
1 , u2;u

(n+1,m2)
2 ) m2 = 0, . . . ,M2 − 1

u(n+1) := u
(n+1,M1)
1 + u

(n+1,M2)
2 .

(17)
Note that we do prescribe a finite number M1 and M2 of inner iterations for each subspace
respectively. Then we have the following properties:

Proposition 3.4. [17, Theorem 5.1] The algorithm in (17) produces a sequence (u(n))n∈N in
BV (Ω) with the following properties:

(i) J (u(n)) > J (u(n+1)) for all n ∈ N (unless u(n) = u(n+1));

(ii) limn→∞ ‖u(n+1) − u(n)‖L2(Ω) = 0;

(iii) the sequence (u(n))n∈N has subsequences which converge weakly in L2(Ω) and in BV (Ω)
with the weak-*-topology.
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Remark 3.5. Note that Proposition 3.4 does in general not guarantee the convergence of
the sequence u(n) to a minimizer of J . In [17] this convergence could be ensured only under
some additional technical assumptions on the decomposition, cf. [17, Theorem 5.1 (iv)]. The
numerical discussion in [17] as well as the numerical results presented in Section 5 in this
paper, however suggest that the proposed method still works well in practice. In a subsequent
paper [16] the convergence picture is complemented for a modified version of algorithm (17),
where convergence to minimizers of J is proven in the discrete setting and for overlapping
subdomains.

3.3 Parallel Versions

One initial motivation of introducing domain decomposition algorithms is parallelization.
Simultaneously computing the solution of each subproblem on a multiple processor reduces the
computational time of the algorithms significantly, as it was shown in [16] for total variation
minimization. Therefore we introduce a parallel version of the previously discussed domain
decomposition approaches.

The parallel nonoverlapping domain decomposition algorithm reads as follows: Pick an

initial V1 ⊕ V2 3 u(0,M1)
1 + u

(0,M2)
2 := u(0) ∈ BV (Ω), for example u(0) = 0, and iterate



{
u

(n+1,0)
1 = u

(n,M1)
1

u
(n+1,m1+1)
1 = argminu1∈V1

J s1 (u1 + u
(n,M2)
2 , u

(n+1,m1)
1 ) m1 = 0, . . . ,M1 − 1{

u
(n+1,0)
2 = u

(n,M2)
2

u
(n+1,m2+1)
2 = argminu2∈V2

J s2 (u
(n,M1)
1 + u2, u

(n+1,m2)
2 ) m2 = 0, . . . ,M2 − 1

u(n+1) :=
u

(n+1,M1)
1 +u

(n+1,M2)
2 +u(n)

2 .
(18)

Similar convergence properties as stated in Proposition 3.4 for the sequential algorithm (17)
hold for the parallel algorithm (18), cf. [17].

4 Numerical Implementation

We want to implement algorithm (17) and (18) for the minimization of J . To solve its
subiterations (10) we consider two approaches: OT [17] and the proposed BOS-SB iteration.
In the following we sketch the numerical implementation of both algorithms for the domain Ω1

only, since the implementation is analogue for the other domain by just adjusting the notations

accordingly. Hence we denote u2 = u
(n,M2)
2|Ω1∪Ω̂2

, u1 = u
(n+1,m1+1)
1 , and z1 = u

(n+1,m1)
1 +πV1T

∗(g−

Tu2 − Tu(n+1,m1)
1 ) and we would like to compute the minimizer

u1 = argminu∈V1
‖u− z1‖2L2(Ω1∪Ω̂2)

+ 2α|D(u+ u2)|(Ω1 ∪ Ω̂2). (19)

4.1 Oblique Thresholding

By means of oblique thresholding the solution of (19) is computed by

u1 = (I − PαK)(z1 + u2 − η)− u2,
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where K is the closure of the set{
div ξ : ξ ∈

[
C1
c (Ω)

]2
, |ξ(x)| ≤ 1 ∀x ∈ Ω

}
.

and the element η ∈ V2 is a limit of the corresponding fixed point iteration

η(0) ∈ V̂2, η(m+1) = πV̂2
PαK(η(m) − (z1 + u2)), m ≥ 0. (20)

For the computation of the projection in the oblique thresholding we use an algorithm
proposed by Chambolle in [4].

4.2 BOS-SB

Instead of using the above described oblique thresholding strategy we suggest to use Algorithm
4 to solve the minimization problem (19). Hence the minimizer u1 is the limit of the sequence

(u
(k,Lk)
1 )k generated by algorithm (15). The inner iteration of this algorithm is the Split

Bregman iteration, i.e.,

u
(k+1,`+1)
1 = arg minu1∈V1⊕V̂2

1
2α‖u1 − z1‖2L2(Ω1∪Ω̂2)

+λ
δ ‖u1 − (u

(k,Lk)
1 − δA∗(Au(k,Lk)

1 − f (k)))‖2
L2(Ω1∪Ω̂2)

+µ‖d(k+1,`) −D(u1|Ω1∪Ω̂2
+ u2)− b(k+1,`)‖2

L2(Ω1∪Ω̂2)

d(k+1,`+1) = arg mind |d|`1(Ω1∪Ω̂2) + µ‖d−D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2)− b(k+1,`)‖2
L2(Ω1∪Ω̂2)

b(k+1,`+1) = b(k+1,`) +D(u
(k+1,`+1)
1|Ω1∪Ω̂2

+ u2)− d(k+1,`+1)

and is implemented as suggested in [19], with a small adaptation, since the distributional
derivative of the sum of functions, i.e., D(u1|Ω1∪Ω̂2

+ u2), has to be considered on each sub-

domain.

4.3 Discretization

In order to guarantee the concrete computability and the correctness of these procedures, we
need to discretize the problem and approximate it in finite dimensions. The continuous image
domain Ω = [a, b] × [c, d] ⊂ R2 is approximated by a finite grid {a = x1 < . . . < xN = b} ×
{c = y1 < . . . < yM = d} with equidistant step-size h = xi+1 − xi = b−a

N = d−c
M = yj+1 − yj

equal to 1 (one pixel). The digital image u is an element in H := RN×M . We denote
u(xi, yj) = ui,j for i = 1, . . . , N and j = 1, . . . ,M . The gradient ∇u is a vector in H × H
given by forward differences

(∇u)i,j = ((∇xu)i,j , (∇yu)i,j),

with

(∇xu)i,j =

{
ui+1,j − ui,j if i < N

0 if i = N,

(∇yu)i,j =

{
ui,j+1 − ui,j if j < M

0 if j = M,
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for i = 1, . . . , N , j = 1, . . . ,M . The discretized functional in two dimensions is given by

J δ(u) :=
∑

1≤i,j≤N

(
((Tu)i,j − gi,j)2 + 2α|(∇u)i,j |

)
,

with |y| =
√
y2

1 + y2
2 for every y = (y1, y2) ∈ R2. To give a meaning to (Tu)i,j we assume, for

instance, that T is applied on the piecewise linear interpolant û of the matrix (ui,j)
N,M
i=1,j=1

We further introduce the discrete divergence ∇· : H ×H → H in two dimensions defined,
by analogy with the continuous setting, by ∇· = −∇∗ (∇∗ is the adjoint of the gradient ∇).
That is, the discrete divergence operator is given by backward differences

(∇ · p)ij =


(px)i,j − (px)i−1,j if 1 < i < N

(px)i,j if i = 1

−(px)i−1,j if i = N

+


(py)i,j − (py)i,j−1 if 1 < j < M

(py)i,j if j = 1

−(py)i,j−1 if j = M,

for every p = (px, py) ∈ H ×H.

4.4 Domain decompositions

4.4.1 Sequential algorithm

For the sequential algorithm we split the domain Ω into horizontal stripes, i.e., the domain
Ω = [a, b]× [c, d] is split with respect to its rows. In particular we have Ω1 = [a, xdN2 e]× [c, d]

and Ω2 = [xdN2 e+1, b] × [c, d], compare Figure 1. The splitting in more than two domains is

done similarly, cf. also [17].

a = x1

Ω1

xdN/2e
——- ——- ∂Ω1 ∩ ∂Ω2 ——- ——-

xdN/2e+1

Ω2

b = xN

Figure 1: Decomposition of the discrete image in two domains for the Ω1 and Ω2 with interface
∂Ω1 ∩ ∂Ω2

In both subminimization strategies we additionally have to introduce stripes Ω̂1 and Ω̂2

on the interfaces of the domain patches. These stripes arise naturally from the splitting of
the total variation (11). In case of oblique thresholding, the stripe Ω̂1∪ Ω̂2 defines the domain
in which the η-computation (20) takes place. This is motivated by the observation that η is
only supported on Ω2 and that the due to the restriction to this strip produced errors are in
practice negligible, cf. [17] for more details. In the other case when we use Algorithm 4 we
just expand Ω1 by the domain Ω̂1, in which an additional constraint is constituted, see (12)
and (13).
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4.4.2 Parallel algorithm

The splitting in the parallel version of the algorithm is done differently. While the choice of a
different splitting for the parallel version has no theoretical motivation (in fact all the theory
holds true for arbitrary domain splittings), it shows that the domain decomposition algorithm
and its implementation are quite flexible with respect to the type of domain splitting.

For the parallel algorithm the domain Ω = [a, b] × [c, d] is split with respect to its rows
and its columns. More precisely, we split Ω into powers of 4 rectangles, i.e., into 4, 16, 64, . . .
rectangles. This is done as shown in Figure 2. Note, that it is necessary to expand each of
the subdomains by stripes around the interfaces (as in the previous section).

Figure 2: Domain decomposition for the parallel algorithm in four subdomains Ωi, i = 1, 2, 3, 4. The
stripes for the subminimization on Ω1 are located around the interfaces ∂Ω1 ∩ ∂Ω2 and ∂Ω1 ∩ ∂Ω3.

5 Numerical Evaluation

We conclude this paper with a numerical evaluation of the performance of the newly pro-
posed subminimization strategy in Algorithm 4, i.e, Bregmanized Operator Splitting - Split
Bregman (BOS-SB). To do so, we compare both the sequential- and parallel version of the
non-overlapping domain decomposition algorithm, where the subminimization problems are
solved with iterative oblique thresholding (OT) (14) and with BOS-SB (15) as a submini-
mization solver respectively. Here, we focus on its application to image inpainting. In this
case the operator T is given by the multiplier T = 1Ω\D, where D is a hole in the given image.

Let us first discuss the choice of the different parameters. In image inpainting the regu-
larizing parameter α is typically chosen very small, in order to reduce the smoothing effect
outside of the hole D. Hence, for the following inpainting examples we have chosen α = 0.005.
In the domain decomposition algorithm, we consider domain splittings into D = 2, 3, 4, 5 for
the sequential version, and D = 4, 16 for the parallel version, cf. also section 4.4 for more
details on the splitting strategy. The domain decomposition algorithm (8) is iterated until the
error e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 is smaller than a certain tolerance tol, where uorg is the
original image. While this stopping criterion is rather unrealistic for practical applications,
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it serves us as a good basis for comparing the computational behaviour of the subminimiza-
tion solvers. Note however, that in our experience the choice of this tolerance has a slightly
different impact on the domain decomposition algorithm when we solve the subminimization
problems with OT rather than BOS-SB. We shall discuss this in more detail when presenting
the numerical examples.

The number of subminimization iterations M1 and M2 has been chosen to optimize the
computation time for both OT and BOS-SB. In each subdomain we choose the same number
of subiteration, i.e., M1 = M2 =: sub. For OT it turned out that sub = 1 is optimal (also see
[17]). For BOS-SB sub = 1 or sub = 4 subminimization iterations give similar computational
results in the sequential algorithm (see Table 3), while sub = 4 performs noticeably better in
the parallel version of the algorithm. The reasons seem to be that each BOS-SB computation
is much cheaper in terms of computational time than the OT solution (cf. Table 1), but also
that the BOS-SB computation makes more progress in terms of decreasing the error e(n) in
each subspace iteration than OT does (cf. Figure 8).

Next, we discuss the parameter choice taken for the subminimization algorithms. We start
with oblique thresholding.

Parameter choice for oblique thresholding (OT) The choice of parameters in the
oblique thresholding algorithm and their reasoning is discussed in much detail in [17]. In
particular, in [17] this choice has been optimized with respect to the computational efficiency
of the domain decomposition algorithm, for both its sequential (17) and its parallel (18)
version. Therefore, we borrow the parameter values from there and only report them here.
The width of the stripe in which η is computed is taken equal to 6 (this can be decreased
or increased depending on the size of the regularization parameter α; again see [17] for a
discussion on this). The fixed point algorithm for η either terminates when the normalized
L2 distance between two subsequent iterates is smaller than tolη = 10−6 or after a maximal
number of 10 iterations. The fixed point algorithm of Chambolle [4] for the computation of
the projection PαK(·) terminates when the normalized L2 distance between two subsequent
iterates is smaller than tolp = 10−3.

Parameter choice for Bregmanized operator splitting - split Bregman (BOS-SB)
Algorithm 4, i.e., BOS-SB, consists of two nested iterations. The outer iteration is the
Bregmanized operator splitting (BOS) iteration Algorithm 3, in which the corresponding
minimization problem in each iteration is solved via the Split Bregman (SB) algorithm (6)
that is again solved iteratively (inner iteration).

The number of BOS-iterations has been chosen equal to 1. In fact, our numerical tests
confirm that there is absolutely no gain in terms of computational performance when iterating
more. In particular, the number of domain decomposition iterations undertaken to reach a
certain accuracy e(n) < tol is exactly the same when iterating BOS once or iterating twice
or more. The reason for this is that we chose the parameter λ/δ in front of the Bregman
fidelity term ‖u− (u(k,Lk) − δA∗(Au(k,Lk) − f (k)))‖22 very small, i.e., λ/δ = 10−8/2. Although
this means that we ensure the constraint Au = 0 very loosely only, this is adjusted by the
reconsideration of this constraint in every domain decomposition iteration. Moreover, note
that the BOS-iterations are proven to converge for every choice of the parameters λ, δ > 0,
cf. Proposition 3.3.

The Split Bregman algorithm (6) is solved with µ = 10 and iterated until the normalized
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(a) Vandalized image

(b) Splitting for the sequential algorithm (c) Splitting for the parallel algorithm

Figure 3: The vandalized image and its domain splitting for the sequential and the parallel version of
the algorithm for D = 4 domains.

L2 distance of two subsequent iterates u(l) and u(l+1) is smaller than 10−3. This choice
has been made comparable to the tolerance for the Chambolle algorithm in the previous
paragraph.

Numerical results - sequential algorithm We present numerical results for the sequen-
tial and the parallel version of the domain decomposition algorithm (8), in which we compare
the performance of OT and BOS-SB in terms of quality of the inpainting results and the
computational time needed to achieve them. The numerical examples presented here have
been computed on a 2× 3.2 GHz-Quad-Core MacPro. In Figure 3(a) we start our numerical
discussion with an inpainting task for an image of size 270 × 167. The decompositions of
the image domain into D subdomains are done differently for the sequential- and the parallel
version of the algorithm, cf. Section 4.4. For further reference, we plotted the decompositions
for the image in Figure 3(a) in D = 4 domains for the sequential- and parallel case in Figure
3(b) and 3(c) respectively.

In Figure 4 we apply the sequential domain decomposition algorithm (17) with D = 5
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(a) Image inpainted with OT (b) Image inpainted with BOS-SB

Figure 4: Inpainting with the sequential version of domain decomposition (17) in D = 5 subdomains:
(a) inpainted image with OT used to solve the subminimization problems; (b) inpainted image with
BOS-SB used to solve the subminimization problems.

subdomains for inpainting the image in 3(a). The inpainting results computed with OT and
with BOS-SB are presented in Figure 4(a) and 4(b) respectively.

For a first comparison between the two algorithms, we report their computational speed
for solving one subspace minimization averaged over the first 100 domain decomposition
iterations in Table 1. For the OT algorithm, we have to differ between the subdomains,
which are at the border of the image domain, i.e., the first and the last stripe in Figure
3(b), and the ones which are in the inner part of the image domain. The subdomains on
the borders share only one interface with the neighbouring subdomain, resulting in only one
η-iteration (20), while the other one require the solution of two η-iterations on the lower and
upper interfaces. Consequently, the solution of the subspace minimization problem with OT
for the border elements is a bit faster than its solution for the inner elements. In either case,
BOS-SB by far outperforms the OT algorithm in terms of computational speed. BOS-SB is
about three times faster than OT in the computation of one subminimization problem.

Next we compare OT and BOS-SB in their ability to solve the domain decomposition
problem accurately and fast. To do so, we first have to find a reasonable basis for comparison.
In particular, we have to find the right stopping criterion. One standard choice for stopping
an algorithm is to check the distance between two subsequent iterates, i.e., the value of
‖u(n+1) − u(n)‖2. If this value is smaller than a prescribed tolerance, i.e., if we are close to
a fixed point of the algorithm, the iteration is stopped and the current iterate is accepted
as a good approximation to the minimizer. While this is a good criterion for stopping an
algorithm, it is not a good one for comparing two algorithms with each other. The iterative
behaviour of two algorithms can be very different and being close to a fixed point does not
necessarily mean that the algorithm is close to the desired solution. The next generic choice
then is the value of the energy evaluated in the iterates. But again, the energy value does
not seem to be applicable either because the energy decrease and the energy values seem to
be different for the two algorithm, cf. Figure 5.

For image inpainting one quality measure is, how close the inpainted image is to the
original image. While the original image is usually unknown in practice, for the comparative
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OT BOS-SB

D = 2: ø CPU time / iteration 0.6 s 0.2 s

D = 3: ø CPU time / iteration 0.52 s (border), 0.74 s (inner) 0.17 s

D = 4: ø CPU time / iteration 0.46 s (border), 0.72 s (inner) 0.14 s

D = 5: ø CPU time / iteration 0.46 s (border), 0.72 s (inner) 0.14 s

Table 1: Computational performance of the subminimization solvers in the sequential version of the
domain decomposition algorithm (17) with D subdomains for inpainting of Figure 3(a): CPU times
are compared for the OT strategy [17] and the proposed Bregman Operator Splitting - Split Bregman
strategy (BOS-SB) Algorithm 4. The reported CPU time is the time in seconds needed for one subspace
minimization, averaged over the subdomains and over the first 100 domain decomposition iterations.
For the evaluation of the OT algorithm one has to defer between a subminimization problem on the
border of the image domain (only one interface and hence only one η-iteration) and a subminimization
problem in the inner of the image domain (two interfaces and hence two η-iterations).

Figure 5: Decrease of the energy J (1) for the OT algorithm and BOS-SB iteration, shown for the
iterative minimization of J on the whole domain and the domain decomposition iteration with D = 5
subdomains.
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# domains OT BOS-SB (sub= 1)

D = 2 223 iterations / 263.32 CPU s 399 iterations / 192.02 CPU s

D = 3 290 iterations / 510.45 CPU s 405 iterations / 210.38 CPU s

D = 4 843 iterations / 2004.82 CPU s 372 iterations / 210 CPU s

D = 5 224 iterations / 636.65 CPU s 394 iterations / 242.39 CPU s

D = 6 245 iterations / 817.45 CPU s 375 iterations / 251.62 CPU s

Table 2: Inpainting for Figure 3(a): Comparison of computational performance for the sequential
version of the domain decomposition algorithm (17) for using iterative thresholding versus BOS-SB to
solve the subminimization problems. The domain decomposition algorithm with OT has been run
until e(n) < tol1 = 0.02662, the domain decomposition algorithm with BOS-SB terminated when
e(n) < tol2 = 0.0225. When increasing the number of subdomains D, the CPU time seem to increase
tremendously for OT, while the computational time for BOS-SB only slightly increases.

tests we are running, it seems to be a good measure for comparing the computational time
of the two algorithms to reach a certain qualitative result. More precisely, let e(n) = ‖uorg −
u(n)‖2/‖u(n)‖2, n = 1, 2, . . . be the error between the current iterate u(n) and the original
image uorg. The algorithms are stopped when e(n) falls below a certain tolerance tol the
first time. We stick to this choice for a quality measure and a stopping criterion for the two
algorithms, although we again have to adapt the aspired tolerance to the two algorithms, cf.
Figure 6.

Moreover, in Figure 7 we check the respective inpainting results in detail for the chosen
tolerances tol1 = 0.02662 for OT domain decomposition and tol2 = 0.0225 for BOS-SB domain
decomposition. The inpainting results seem to be comparable for these choices of stopping
criteria.

From our numerical discussion up to now we have seen the BOS-SB is three times faster
than OT in each subminimization problem, cf. Table 1, but that BOS-SB needs a larger
number of iterations to achieve the same quality in the inpainting result as OT. What is the
effect of these two subminimization strategies onto the performance of the domain decompo-
sition algorithm as a whole? Looking at Figure 8 and Table 2 one immediately sees that the
domain decomposition algorithm with BOS-SB is faster than OT, where the computational
advantage of BOS-SB increases with the number of subdomains. In particular, a surprising
result for us was, that the CPU time for the sequential version of the algorithm computed
with BOS-SB is - in contrast to the same computation with OT - only slightly increasing.
Note, that we have not parallelized our computations yet.

Numerical results - parallel algorithm Finally, we also compare the parallel perfor-
mance of the domain decomposition algorithm when computed with OT and BOS-SB. Note,
that for the sequential version it turned out that solving the subminimization problems (10)
with sub = 1 or sub = 4 BOS-SB computations does not make a significant difference in terms
of computational time needed to solve the inpainting task with the domain decomposition
algorithm, cf. Table 3. We take advantage of this fact for the parallel computations. Here,
choosing sub = 4 and making more progress in each domain decomposition iteration with
approximately the same computational effort, reduces the computational time as a whole
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(a) OT iterate with e(40) = 0.0579 (b) BOS-SB iterate with e(100) = 0.0456

(c) OT iterate with e(100) = 0.0333 (d) BOS-SB iterate with e(200) = 0.0290

(e) OT iterate with e(160) = 0.0277 (f) BOS-SB iterate with e(300) = 0.0241

(g) OT iterate with e(220) = 0.02663 (h) BOS-SB iterate with e(400) = 0.0224

Figure 6: Intermediate results of the inpainting result in Figure 4. The error e(n) in the sequential
domain decomposition algorithm (17) evolves differently when computed with OT and when computed
with BOS-SB.
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(a) OT with tol1 = 0.0225 (b) BOS-SB with tol2 =
0.0225

(c) Original image

Figure 7: Detail of the inpainting result in Figure 4 and the original image. The sequential domain
decomposition algorithm (17) with OT stops after 620 iterations with an error e(620) = 0.02662, while
the same algorithm with BOS-SB used for solving the subminimization problems terminates after 406
iterations with an error of e(406) = 0.0225. Again the error e(n) = ‖uorg − u(n)‖2/‖u(n)‖2.

# domains BOS-SB (sub= 1) BOS-SB (sub=4)

D = 2 399 iterations / 192.02 CPU s 102× 4 iterations / 191.18 CPU s

D = 3 405 iterations / 210.38 CPU s 103× 4 iterations / 206.8 CPU s

D = 4 372 iterations / 210 CPU s 95× 4 iterations / 208.69 CPU s

D = 5 394 iterations / 242.39 CPU s 101× 4 iterations / 245.54 CPU s

D = 6 375 iterations / 251.62 CPU s 95× 4 iterations / 247.86 CPU s

Table 3: Inpainting for Figure 3(a): Comparison of computational performance for the sequential
version of the domain decomposition algorithm (17) solved with BOS-SB with sub = 1 subminimization
iteration (10) and with sub = 4 subminimization iterations.
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Figure 8: Error decrease for inpainting of Figure 3(a) with the sequential version of the domain
decomposition (17) in D = 4 subdomains: In each domain decomposition iteration we measure the
error between the original- and inpainted image, i.e., e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 for iterations
n = 1, 2, . . . 372. While the OT error decreases much faster at the beginning than the error in BOS-
SB, it slows down as iterations progress and BOS-SB catches up.
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# domains OT BOS-SB

D = 4 161 iterations / 135.87 CPU s
(reached accuracy e(k) = 0.029)

92 × 4 iterations / 65.95 CPU s
(reached accuracy e(k) = 0.025)

Table 4: Inpainting for Figure 3(a): Comparison of computational performance for the parallel version
of the domain decomposition algorithm (18) for using OT versus BOS-SB to solve the subminimization
problems.

# domains BOS-SB

D = 1 279 iterations / ≈ 15.8 CPU h

D = 4 192× 4 iterations / ≈ 3.26 CPU h

D = 16 172× 4 iterations / ≈ 2.2 CPU h

Table 5: Inpainting for the 1768×2656 image in Figure 10: Computational performance for the parallel
version of the domain decomposition algorithm (18) when using BOS-SB to solve the subminimization
problems.

because we reduce the number of domain decomposition iterations and hence, the amount
of communication we have to do between the processes. As already discussed in [17], this
strategy cannot be applied for the domain decomposition algorithm solved with OT. For the
parallel computations we therefore choose sub = 1 for the algorithm with OT and sub = 4 for
the algorithm solved with BOS-SB. See Table 4 and Figure 9 for the computational results
for inpainting of the image in Figure 3(a).

We also test the parallel BOS-SB domain decomposition algorithm for a vandalized image
of size 1768 × 2656 pixels, see Figure 10, where we decomposed it into four nonoverlapping
domains in order to restore it on multiple processors. A comparison with respect to the
computation time for different numbers of subdomains is shown in Table 5. There we see that
by increasing the number of domains, the number of iterations and the CPU time decrease.
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Figure 9: Error decrease for inpainting of Figure 3(a) with the parallel version of domain decomposi-
tion (18) in four subdomains: In each domain decomposition iteration we measure the error between the
original- and inpainted image, i.e., e(n) = ‖uorg − u(n)‖2/‖u(n)‖2 for iterations n = 1, 2, . . . 1000. The
final error of OT is e(1000) = 0.028, while the error in BOS-SB in the final iteration is e(1000) = 0.0246.
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Figure 10: Inpainting with the parallel domain decomposition strategy (18): (l.) the vandalized image
of size 1768×2656 pixels; (m.) its decomposition into four domains; (r.) the restored image computed
with (18)
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